Predicting Agitation Events in the Emergency Department Through Artificial Intelligence

急诊科 医学 队列 生命体征 镇静 接收机工作特性 急诊医学 召回 医疗急救 精神科 心理学 内科学 外科 认知心理学
作者
Ambrose H. Wong,A. V. Sapre,Kaicheng Wang,Bidisha Nath,Dhruvil Shah,Anusha Kumar,Isaac V. Faustino,R K Desai,Yue Hu,Leah Robinson,Can Meng,Guangyu Tong,Steven L. Bernstein,Kimberly A. Yonkers,Edward R. Melnick,James Dziura,Robert A. Taylor
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (5): e258927-e258927 被引量:1
标识
DOI:10.1001/jamanetworkopen.2025.8927
摘要

Importance Agitation events are increasing in emergency departments (EDs), exacerbating safety risks for patients and clinicians. A wide range of clinical etiologies and behavioral patterns in the emergency setting make agitation prediction difficult in this setting. Objective To develop, train, and validate an agitation-specific prediction model based on a large, diverse set of past ED visit data. Design, Setting, and Participants This cohort study included electronic health record data collected from 9 ED sites within a large, urban health system in the Northeast US. All ED visits featuring patients aged 18 years or older from January 1, 2015, to December 31, 2022, were included in the analysis and modeling. Data analysis occurred between May 2023 and September 2024. Exposures Variables that served as potential exposures of interest, encompassing demographic information, patient history, initial vital signs, visit information, mode of arrival, and health services utilization. Main Outcomes and Measures The primary outcome of agitation was defined as the presence of an intramuscular chemical sedation and/or violent physical restraint order during an ED visit. A clinical model was developed to identify risk factors that predict agitation development during an ED visit prior to symptom onset. Model performance was measured using area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (PR-AUC). Results The final cohort comprised 3 048 780 visits. The cohort had a mean (SD) age of 50.2 (20.4) years, with 54.7% visits among female patients. The final artificial intelligence model used 50 predictors for the primary outcome of predicting agitation events. The model achieved an AUROC of 0.94 (95% CI, 0.93-0.94) and a PR-AUC of 0.41 (95% CI, 0.40-0.42) in cross-validation, indicating good discriminative ability. Calibration of the model was evaluated and demonstrated robustness across the range of predicted probabilities. The top predictors in the final model included factors such as number of past ED visits, initial vital signs, medical history, chief concern, and number of previous sedation and restraint events. Conclusions and Relevance Using a cross-sectional cohort of ED visits across 9 hospitals, the prediction model included factors for detecting risk of agitation that demonstrated high accuracy and applicability across diverse patient populations. These results suggest that clinical application of the model may enhance patient-centered care through preemptive deescalation and prevention of agitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上小土豆完成签到 ,获得积分10
2秒前
虹归于叶完成签到 ,获得积分10
6秒前
kanong完成签到,获得积分0
10秒前
开拖拉机的医学僧完成签到 ,获得积分10
14秒前
白凌风完成签到 ,获得积分10
14秒前
Johnpick应助微笑枫叶采纳,获得10
20秒前
gsji完成签到,获得积分10
24秒前
26秒前
满意代萱完成签到 ,获得积分10
27秒前
30秒前
符从丹完成签到,获得积分10
31秒前
ygr完成签到,获得积分0
33秒前
乐悠悠完成签到 ,获得积分10
33秒前
科研小虫发布了新的文献求助10
35秒前
John完成签到 ,获得积分10
40秒前
mark33442完成签到,获得积分10
50秒前
50秒前
符从丹发布了新的文献求助10
51秒前
乔木木完成签到,获得积分10
1分钟前
HoHo完成签到 ,获得积分10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
TY完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
热心雪一完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助ma采纳,获得10
1分钟前
changfox完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ma发布了新的文献求助10
1分钟前
倩倩完成签到 ,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
1分钟前
一独白完成签到,获得积分10
1分钟前
科研小虫完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859