Evaluation of factors associated with adult skeletal fluorosis in coal-burning type of endemic fluorosis and initial screening model based on machine learning in Guizhou, Southwest China

中国 氟骨症 环境科学 地理 采矿工程 氟斑牙 地质学 氟化物 考古 化学 无机化学
作者
H Y Shi,You Meng,X. Li,Boyou Zhang,Jing Gao,Dongxu Zhou,Ying Tu,Zihao Xia,Jun Li,Guang‐Hong Yang,Y Liu,Hongbing Ye
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:293: 118018-118018
标识
DOI:10.1016/j.ecoenv.2025.118018
摘要

Skeletal fluorosis caused by coal-burning type endemic fluorosis greatly affects the health of the population in the affected areas, but large-scale diagnostic work is limited by human and material resources, making it difficult to implement comprehensively. In this study, we investigate adults in coal-burning type endemic skeletal fluorosis areas in Guizhou. The study areas are selected by a comprehensive analysis of the detection rate of dental fluorosis in children aged 8-12 years in Guizhou for the year 2023. We collect information from questionnaires, physical examinations, and diagnostic X-ray Findings of Skeletal Fluorosis (XRF) in adults. The effective number of people investigated in this study was 2276, and the detection rate of XRF was 79.35 %. The top 5 relevant factors for skeletal fluorosis were age, educational background, height, Mini-Mental State Examination (MMSE) score and family population. Among the 8 models, random forest performed the best with an accuracy of 86.00 %, and the performance was more stable in the prevalence of different sizes, which provides a new idea for the prevention and treatment of skeletal fluorosis in coal-burning type of endemic fluorosis. In this study, the screening of the main correlates of XRF can provide an effective reference for the initial screening of skeletal fluorosis, and the practical application value of machine learning in this research field can be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老陈发布了新的文献求助10
刚刚
ml完成签到,获得积分20
1秒前
星河发布了新的文献求助100
2秒前
大模型应助老陈采纳,获得10
4秒前
7秒前
8秒前
9秒前
10秒前
彩色亿先发布了新的文献求助10
11秒前
11秒前
fenghp发布了新的文献求助10
13秒前
燕燕于飞发布了新的文献求助10
14秒前
Akim应助kepler采纳,获得10
14秒前
oreo发布了新的文献求助10
15秒前
康轲发布了新的文献求助30
16秒前
科研通AI2S应助小六采纳,获得10
16秒前
年轻的馒头完成签到,获得积分10
16秒前
茶茶完成签到,获得积分10
17秒前
酷波er应助将1采纳,获得10
18秒前
陈宇完成签到,获得积分10
19秒前
无花果应助比大家采纳,获得10
19秒前
oreo完成签到,获得积分10
22秒前
科研通AI5应助燕燕于飞采纳,获得10
24秒前
fenghp完成签到 ,获得积分20
25秒前
雨竹完成签到 ,获得积分10
25秒前
蒋依伶发布了新的文献求助10
26秒前
SS应助dududu采纳,获得10
26秒前
27秒前
阳光的千易完成签到,获得积分10
28秒前
aaefv完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
叫滚滚发布了新的文献求助20
30秒前
30秒前
小六发布了新的文献求助10
31秒前
wj完成签到 ,获得积分0
31秒前
Qi完成签到 ,获得积分10
31秒前
maomao1986完成签到,获得积分10
32秒前
将1发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623