亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty Quantification and Quality Control for Heatmap-based Landmark Detection Models

地标 计算机科学 人工智能 质量(理念) 模式识别(心理学) 计算机视觉 物理 量子力学
作者
Yong Feng,Jinzhu Yang,Ling-Zhi Tang,Song Sun,Yonghuai Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3564267
摘要

Uncertainty quantification is a vital aspect of explainable artificial intelligence that fosters clinician trust in medical applications and facilitates timely interventions, leading to safer and more reliable outcomes. Although deep learning models have reached clinically acceptable accuracy in anatomical landmark detection, their predictions remain susceptible to contextual noise due to the small size of the target structures, making uncertainty quantification more challenging than in classification and segmentation tasks. This paper presents an end-to-end uncertainty quantification method tailored for heatmapbased anatomical landmark detection models, designed to improve both interpretability and controllability in clinical applications. Leveraging Dempster-Shafer Theory and Subjective Logic Theory, we implement probability assignment and uncertainty quantification through a single forward pass to ensure computational efficiency. We introduce an evidence map that captures the strength of landmark evidence, alongside an uncertainty map that calibrates predicted probabilities within the Subjective Logic framework. The interaction between these two components, facilitated by a cross-attention mechanism, further improves landmark detection accuracy and enhances the effectiveness of uncertainty quantification. Experimental results demonstrate that the proposed method maintains detection accuracy, even in noisy environments, while outperforming state-of-the-art methods in terms of uncertainty quantification and quality control. Furthermore, the model effectively identifies out-of-distribution data solely through calibrated probabilities when encountering inconsistencies in multi-center data and novel data, underscoring its potential for clinical applications. The source code is available at github.com/warmestwind/CalibratedSL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粽子完成签到,获得积分10
17秒前
23秒前
25秒前
wafo发布了新的文献求助10
28秒前
可爱的函函应助好耶采纳,获得30
30秒前
36秒前
小郭发布了新的文献求助10
41秒前
隐形曼青应助科研通管家采纳,获得10
48秒前
48秒前
开心每一天完成签到 ,获得积分10
53秒前
科研通AI5应助qiuqiutantan采纳,获得20
1分钟前
1分钟前
1分钟前
不打烊吗发布了新的文献求助30
1分钟前
小郭完成签到,获得积分10
1分钟前
远方完成签到,获得积分10
1分钟前
不打烊吗完成签到,获得积分20
1分钟前
1分钟前
Noob_saibot完成签到,获得积分10
1分钟前
1分钟前
qiuqiutantan发布了新的文献求助20
1分钟前
1分钟前
好耶发布了新的文献求助30
1分钟前
猪猪hero应助远方采纳,获得10
1分钟前
1分钟前
夕诙应助程曦采纳,获得30
2分钟前
所所应助不打烊吗采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
橙子发布了新的文献求助10
2分钟前
2分钟前
yinlao完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
zenabia完成签到 ,获得积分10
2分钟前
ZAJsci完成签到 ,获得积分10
2分钟前
2分钟前
苹果问晴发布了新的文献求助10
2分钟前
苹果问晴完成签到,获得积分10
3分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360009
捐赠科研通 3068716
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033