Using deep learning to diagnose pulmonary hypertension

医学 肺动脉 肺动脉高压 血管阻力 心导管术 人口 心脏病学 预期寿命 内科学 血流动力学 环境卫生
作者
Pieter van der Bijl,Jeroen J. Bax
出处
期刊:European Journal of Echocardiography [Oxford University Press]
卷期号:23 (11): 1457-1458 被引量:3
标识
DOI:10.1093/ehjci/jeac148
摘要

This editorial refers to 'A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension', by G.-P. Diller et al., https://doi.org/10.1093/ehjci/jeac147. Pulmonary hypertension is defined as an increase in mean pulmonary artery pressure ≥25 mmHg at rest, as assessed by right heart catheterization.1 More recently, at the 5th World Symposium on pulmonary hypertension in 2018, it was proposed that the threshold should be lowered to >20 mmHg, based on population studies demonstrating this to be the upper limit of normal and values above 20 mmHg decreasing life expectancy.2,3 Pulmonary arterial hypertension, on the other hand, comprises a very specific group of patients with pulmonary hypertension, namely those with increased pulmonary vascular resistance (>3 Wood units). While this threshold was not altered at the above-mentioned symposium, the upper limit of normality has been shown to be 2 Wood units, whereas higher values decrease survival.1, 2 Direct haemodynamic measurements cannot be performed in all patients due to the invasive nature of the procedure. The diagnosis of pulmonary hypertension therefore usually relies on non-invasive tests, such as echocardiography. Transthoracic echocardiography has only modest sensitivity and specificity for the diagnosis of pulmonary hypertension, and pulmonary artery pressures can be readily over- or underestimated.1,4,5 Consequently, contemporary guidelines recommend that only a probability of pulmonary hypertension be reported on the basis of an echocardiographic examination.1 This probability-based recommendation is predicated not only on the actual, echocardiographically estimated pulmonary artery pressure, but includes a number of indirect signs supporting the presence of pulmonary hypertension.1,2 The symptoms and signs of pulmonary hypertension are often non-specific, but early diagnosis is paramount, since: (i) the condition usually has a progressive course and impacts negatively on survival and (ii) it can often be treated successfully if recognized early.1,6 Echocardiographic screening for pulmonary hypertension requires not only a fair amount of expertise, but also vigilance, and strategies to improve the detection rate in a busy echocardiography laboratory may have clinical utility. Artificial intelligence and 'deep learning' (which is a subdivision of machine learning, where artificial neural networks are constructed to model data) have the potential to improve echocardiographic diagnoses by identifying and analysing an array of pertinent imaging parameters.7 Whether deep learning can improve the detection rate of pulmonary hypertension, especially in echocardiography laboratories where expertise in diagnosing this condition is less readily available, is unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
科研通AI5应助黎小静采纳,获得10
5秒前
Ava应助CHB只争朝夕采纳,获得10
5秒前
wwwww发布了新的文献求助200
7秒前
kc135完成签到,获得积分10
7秒前
李健应助再来俩汉堡采纳,获得10
8秒前
aura完成签到,获得积分10
10秒前
12秒前
13秒前
言小鱼发布了新的文献求助10
15秒前
木子完成签到,获得积分10
16秒前
17秒前
傻傻的哈密瓜完成签到,获得积分10
18秒前
黎小静发布了新的文献求助10
18秒前
Hello应助kzf丶bryant采纳,获得10
19秒前
sky完成签到 ,获得积分10
20秒前
zz321发布了新的文献求助10
20秒前
24秒前
小楠完成签到,获得积分10
26秒前
27秒前
27秒前
黎小静完成签到,获得积分10
30秒前
kzf丶bryant发布了新的文献求助10
31秒前
Lucas应助Hoax采纳,获得10
34秒前
晓宇发布了新的文献求助10
34秒前
陈龙111111发布了新的文献求助10
36秒前
含糊的念梦完成签到,获得积分10
37秒前
39秒前
断棍豪斯完成签到,获得积分10
39秒前
42秒前
45秒前
46秒前
zpmi完成签到,获得积分10
47秒前
充电宝应助蹦擦擦采纳,获得10
47秒前
田様应助陈龙111111采纳,获得10
47秒前
www完成签到 ,获得积分10
52秒前
woshibyu完成签到 ,获得积分10
55秒前
pluto应助学术扛把子采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385