A Bayesian Latent Variable Model for Analysis of Empathic Accuracy

心理学 贝叶斯概率 相关性 潜变量 差异(会计) 感知 认知心理学 社会心理学 人工智能 计算机科学 数学 几何学 会计 神经科学 业务
作者
Linh Nghiem,Benjamin A. Tabak,Zachary Wallmark,Talha Alvi,Jing Cao
出处
期刊:Emerging topics in statistics and biostatistics 卷期号:: 201-214
标识
DOI:10.1007/978-3-031-14525-4_10
摘要

Empathic accuracy (EA), defined as the ability to accurately understand the thoughts and emotions of others, has become a well-studied phenomenon in social and clinical psychology. A widely used computer-based EA paradigm compares perceivers’ ratings of targets’ feelings or affective states with the ratings of target themselves (the true ratings) and uses correlation or its monotonic transformation as a measure of EA. However, correlation has a number of notable limitations. In particular, perceivers may differ in their rating patterns, but still have similar overall correlations. To overcome the limitations, we propose a Bayesian latent variable model that decomposes EA into two separate dimensions—discrimination and variability. Discrimination measures perceivers’ sensitivity in relation to the true ratings, and variability measures the variance of random error in perceiver’s perceptions. Similar to the conventional correlation, the Bayesian model is able to measure the overall level of the association between perceiver and target, but more importantly, the Bayesian approach can provide insights into how perceivers differ in their EA. We demonstrate the advantages of the new EA measures in two case studies. The proposed Bayesian model has a simple specification and is easy to use in practice due to its straightforward implementation in popular software. The R code is included in the supplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
long发布了新的文献求助10
2秒前
斯文绮山发布了新的文献求助10
2秒前
波子汽水发布了新的文献求助10
2秒前
萧一发布了新的文献求助10
3秒前
3秒前
大吉发布了新的文献求助10
3秒前
汪侠发布了新的文献求助10
4秒前
5秒前
魁梧的怜南完成签到,获得积分10
6秒前
7秒前
科研通AI6应助豆芽菜采纳,获得10
7秒前
NexusExplorer应助chuxu采纳,获得10
8秒前
木子发布了新的文献求助10
8秒前
妙奇发布了新的文献求助10
8秒前
8秒前
rwf发布了新的文献求助10
8秒前
111发布了新的文献求助10
9秒前
SciGPT应助萧一采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
14秒前
吱吱发布了新的文献求助10
14秒前
yby发布了新的文献求助10
15秒前
田様应助RR采纳,获得30
16秒前
bubble嘞发布了新的文献求助10
17秒前
17秒前
甜蜜小熊猫完成签到,获得积分10
17秒前
18秒前
SciGPT应助123别认出我采纳,获得30
18秒前
六六发布了新的文献求助10
18秒前
19秒前
19秒前
TripleY发布了新的文献求助10
19秒前
科研通AI6应助康K采纳,获得30
20秒前
科研互通完成签到,获得积分10
20秒前
Akim应助徐凤年采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431192
求助须知:如何正确求助?哪些是违规求助? 4544297
关于积分的说明 14191632
捐赠科研通 4462924
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414676