Efficient and precise detection for surface flaws on large-aperture optics based on machine vision and machine learning

机器视觉 计算机科学 光圈(计算机存储器) 光学 激光器 功率(物理) 光功率 人工智能 材料科学 计算机视觉 物理 声学 量子力学
作者
Zhaoyang Yin,Henan Liu,Linjie Zhao,Jian Cheng,Chao Tan,Xiaotao Li,Yankang Chen,Zhiyu Lin,Mingjun Chen
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:159: 109011-109011 被引量:15
标识
DOI:10.1016/j.optlastec.2022.109011
摘要

Large-aperture optical components have a wide application in high-power laser facilities. Surface flaws such as damages and contaminants generated under high-power laser irradiation can greatly affect the optical or mechanical performance of optics, so the optical components must be carefully inspected to evaluate optics damage and cleanliness. However, it is of great challenge to achieve rapid and accurate positioning, classification, and measurement of micron-level flaws on the surface of large-aperture optics. This paper proposes a novel surface flaw detection technology based on machine vision and machine learning. To balance efficiency and accuracy, a dark-field imaging system based on progressive scanning is designed to obtain the image of optics surface. A set of surface flaw detection algorithms based on machine learning including object segmentation, flaw feature extraction, and classification and size calibration of flaw are proposed to accurately assess the state of surface flaws. The experiments show that the system can complete the detection of an optical component (430 mm × 430 mm) within 6 min. The minimum detectable size of the flaws can reach 20 μm, and the position accuracy of the flaws is better than 50 μm. The classification accuracy of flaw is 98.59 %, and the average relative errors of the size measurement of damages and contaminants are 3.23 % and 6.58 %, respectively. The experimental results demonstrate the effectiveness of the method in detecting surface flaws of large-aperture optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
honghong完成签到 ,获得积分10
1秒前
xyy发布了新的文献求助10
1秒前
xucc完成签到,获得积分10
1秒前
dildil发布了新的文献求助10
1秒前
haohaha发布了新的文献求助10
2秒前
sgjj33应助Arrebol采纳,获得10
2秒前
Lucas应助tdtk采纳,获得10
2秒前
3秒前
易天发布了新的文献求助10
3秒前
3秒前
wanci应助梁正强采纳,获得10
3秒前
二斤瓜子完成签到,获得积分10
3秒前
花开花落完成签到,获得积分10
3秒前
ffw1完成签到,获得积分10
4秒前
Pumpkin应助沿岸有贝壳采纳,获得10
4秒前
ZHOUZHEN完成签到,获得积分10
4秒前
所所应助时尚俊驰采纳,获得10
4秒前
霡霂发布了新的文献求助10
5秒前
义气青亦完成签到,获得积分10
5秒前
wang完成签到,获得积分10
6秒前
大反应釜完成签到,获得积分10
7秒前
飘逸访文发布了新的文献求助10
7秒前
小zz完成签到 ,获得积分10
8秒前
易天完成签到,获得积分10
8秒前
包凡之完成签到,获得积分10
9秒前
赫连立果完成签到,获得积分10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Mt完成签到,获得积分10
10秒前
今后应助科研通管家采纳,获得10
11秒前
yifangz完成签到,获得积分20
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
XiangW应助科研通管家采纳,获得20
11秒前
积极的寒凡完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792760
求助须知:如何正确求助?哪些是违规求助? 3337166
关于积分的说明 10284026
捐赠科研通 3054010
什么是DOI,文献DOI怎么找? 1675751
邀请新用户注册赠送积分活动 803769
科研通“疑难数据库(出版商)”最低求助积分说明 761533