5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm

计算机科学 选择(遗传算法) 特征选择 资源配置 算法 数学优化 人工智能 数学 计算机网络 生物 古生物学
作者
Amel Ali Alhussan,S. K. Towfek
出处
期刊:Computers, materials & continua 卷期号:80 (1): 1179-1201 被引量:5
标识
DOI:10.32604/cmc.2024.049874
摘要

In the contemporary world of highly efficient technological development, fifth-generation technology (5G) is seen as a vital step forward with theoretical maximum download speeds of up to twenty gigabits per second (Gbps). As far as the current implementations are concerned, they are at the level of slightly below 1 Gbps, but this allowed a great leap forward from fourth generation technology (4G), as well as enabling significantly reduced latency, making 5G an absolute necessity for applications such as gaming, virtual conferencing, and other interactive electronic processes. Prospects of this change are not limited to connectivity alone; it urges operators to refine their business strategies and offers users better and improved digital solutions. An essential factor is optimization and the application of artificial intelligence throughout the general arrangement of intricate and detailed 5G lines. Integrating Binary Greylag Goose Optimization (bGGO) to achieve a significant reduction in the feature set while maintaining or improving model performance, leading to more efficient and effective 5G network management, and Greylag Goose Optimization (GGO) increases the efficiency of the machine learning models. Thus, the model performs and yields more accurate results. This work proposes a new method to schedule the resources in the next generation, 5G, based on a feature selection using GGO and a regression model that is an ensemble of K-Nearest Neighbors (KNN), Gradient Boosting, and Extra Trees algorithms. The ensemble model shows better prediction performance with the coefficient of determination R squared value equal to. 99348. The proposed framework is supported by several Statistical analyses, such as the Wilcoxon signed-rank test. Some of the benefits of this study are the introduction of new efficient optimization algorithms, the selection of features and more reliable ensemble models which improve the efficiency of 5G technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助DG采纳,获得10
刚刚
1秒前
青辣椒发布了新的文献求助10
2秒前
wyh发布了新的文献求助10
2秒前
linxi完成签到,获得积分10
3秒前
刘恒玉发布了新的文献求助10
4秒前
张静枝发布了新的文献求助10
4秒前
依月发布了新的文献求助10
5秒前
Kkk完成签到 ,获得积分10
5秒前
6秒前
6秒前
阿波罗完成签到 ,获得积分0
7秒前
7秒前
潇洒的土豆完成签到,获得积分10
7秒前
livo完成签到,获得积分10
8秒前
Ava应助张菁钊采纳,获得10
8秒前
aniannn发布了新的文献求助10
10秒前
suzy发布了新的文献求助10
11秒前
夏keqiang完成签到,获得积分10
12秒前
12秒前
13秒前
whisper发布了新的文献求助20
14秒前
15秒前
15秒前
传奇3应助AIDIN采纳,获得10
15秒前
16秒前
16秒前
所所应助爱听歌的青筠采纳,获得10
17秒前
17秒前
17秒前
欲扬先抑完成签到,获得积分10
17秒前
fan完成签到 ,获得积分10
18秒前
谦让钧发布了新的文献求助10
18秒前
19秒前
tangwenhuan发布了新的文献求助10
21秒前
21秒前
21秒前
武雨寒发布了新的文献求助10
22秒前
23秒前
默默迎蕾发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145278
求助须知:如何正确求助?哪些是违规求助? 4342658
关于积分的说明 13524080
捐赠科研通 4183564
什么是DOI,文献DOI怎么找? 2294090
邀请新用户注册赠送积分活动 1294528
关于科研通互助平台的介绍 1237558