Constructing unique dual-functional double-hollow architecture for enhanced high-voltage structural stability of layered oxide cathode

材料科学 阴极 氧化物 结构稳定性 电压 纳米技术 晶界 高压 三元运算 双层 复合材料 微观结构 计算机科学 电气工程 结构工程 冶金 工程类 程序设计语言
作者
Xinyou He,Shilin Su,Bao Zhang,Zhiming Xiao,Lei Ming,Xing Ou
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:72: 103768-103768
标识
DOI:10.1016/j.ensm.2024.103768
摘要

Elevating the working voltage has proven to be an effective strategy for enhancing the energy density of ternary layered cathode materials. However, the accelerated failure of secondary particle structure during high-voltage cycling hinders their practical application. Although some attempts have been exerted to address this issue by designing particle arrangement, these secondary structure modifications only provide the limited help to the structural failure problem. Herein, we focus on the cause and characteristic of secondary particle cracks, investigate their formation principle and development rule, and delicately propose a unique double-hollow secondary structure. The two hollow regions create an environment that facilitates the release of internal strain and reduces stress at grain boundaries, thus ensuring the homogeneous stress distribution within the secondary particles. Thereby, the formation of intergranular crack is effectively mitigated. Additionally, the hollow regions act as barrier layers to impede the crack propagation. The dual functions of this double-hollow structure efficiently maintain the tight connection among these primary particles, greatly boosting the high-voltage cycling stability. The designed material with double-hollow architecture exhibits an obvious capacity retention increase from 67.8% (conventional structure) to 84.4% at 1 C within 3.0-4.5 V after 300 cycles. This work demonstrates that the double-hollow structure can effectively address the key issues of crack occurrence and development, providing a novel structural design concept for the exploration of high-voltage cathode materials with superior stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hexagram完成签到 ,获得积分10
1秒前
xxx发布了新的文献求助10
2秒前
遥知马发布了新的文献求助10
2秒前
3秒前
Chaos完成签到 ,获得积分10
3秒前
ZX完成签到 ,获得积分10
4秒前
粗犷的灵松完成签到,获得积分10
6秒前
研友_LjDgxZ完成签到,获得积分10
7秒前
科研通AI5应助Dddd采纳,获得30
8秒前
8秒前
袁乾博完成签到,获得积分20
9秒前
13秒前
江洋大盗发布了新的文献求助10
14秒前
炙热向南应助饱满的亦旋采纳,获得10
15秒前
1234完成签到 ,获得积分10
15秒前
15秒前
lucky完成签到 ,获得积分10
16秒前
16秒前
烟花应助runtang采纳,获得10
17秒前
傲慢葫芦发布了新的文献求助10
19秒前
20秒前
zz发布了新的文献求助10
21秒前
天桥下得小路完成签到,获得积分10
21秒前
22秒前
肥波完成签到,获得积分10
23秒前
23秒前
sxm发布了新的文献求助10
25秒前
科研通AI5应助Lagom采纳,获得30
26秒前
27秒前
WQS完成签到 ,获得积分10
27秒前
星空下的皮先生完成签到,获得积分10
27秒前
28秒前
vv发布了新的文献求助10
28秒前
28秒前
司空博涛发布了新的文献求助20
28秒前
29秒前
29秒前
30秒前
31秒前
Jasper应助酸辣粉采纳,获得10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182348
求助须知:如何正确求助?哪些是违规求助? 3718476
关于积分的说明 11720951
捐赠科研通 3398069
什么是DOI,文献DOI怎么找? 1864362
邀请新用户注册赠送积分活动 922206
科研通“疑难数据库(出版商)”最低求助积分说明 833873