Constructing unique dual-functional double-hollow architecture for enhanced high-voltage structural stability of layered oxide cathode

材料科学 阴极 氧化物 对偶(语法数字) 结构稳定性 电压 纳米技术 光电子学 化学工程 电气工程 结构工程 冶金 文学类 工程类 艺术
作者
Xinyou He,Shilin Su,Bao Zhang,Zhiming Xiao,Lei Ming,Xing Ou
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:: 103768-103768
标识
DOI:10.1016/j.ensm.2024.103768
摘要

Elevating the working voltage has proven to be an effective strategy for enhancing the energy density of ternary layered cathode materials. However, the accelerated failure of secondary particle structure during high-voltage cycling hinders their practical application. Although some attempts have been exerted to address this issue by designing particle arrangement, these secondary structure modifications only provide the limited help to the structural failure problem. Herein, we focus on the cause and characteristic of secondary particle cracks, investigate their formation principle and development rule, and delicately propose a unique double-hollow secondary structure. The two hollow regions create an environment that facilitates the release of internal strain and reduces stress at grain boundaries, thus ensuring the homogeneous stress distribution within the secondary particles. Thereby, the formation of intergranular crack is effectively mitigated. Additionally, the hollow regions act as barrier layers to impede the crack propagation. The dual functions of this double-hollow structure efficiently maintain the tight connection among these primary particles, greatly boosting the high-voltage cycling stability. The designed material with double-hollow architecture exhibits an obvious capacity retention increase from 67.8% (conventional structure) to 84.4% at 1 C within 3.0-4.5 V after 300 cycles. This work demonstrates that the double-hollow structure can effectively address the key issues of crack occurrence and development, providing a novel structural design concept for the exploration of high-voltage cathode materials with superior stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔洪瑞完成签到,获得积分10
13秒前
13秒前
zeannezg完成签到 ,获得积分10
17秒前
XXXXX发布了新的文献求助10
18秒前
kanong完成签到,获得积分0
19秒前
可飞完成签到,获得积分10
21秒前
水晶李完成签到 ,获得积分10
27秒前
柠檬汽水完成签到,获得积分10
32秒前
Dave完成签到,获得积分10
32秒前
星星的金子完成签到 ,获得积分10
33秒前
从容的水壶完成签到 ,获得积分10
34秒前
甜甜的tiantian完成签到 ,获得积分10
38秒前
不过尔尔完成签到 ,获得积分10
39秒前
40秒前
没头脑和不高兴完成签到 ,获得积分10
40秒前
logolush完成签到 ,获得积分10
44秒前
包容的忆灵完成签到 ,获得积分10
48秒前
哥哥发布了新的文献求助10
56秒前
juju1234完成签到 ,获得积分10
59秒前
wjswift完成签到,获得积分10
1分钟前
liuyong6413发布了新的文献求助10
1分钟前
1分钟前
DY完成签到,获得积分10
1分钟前
1分钟前
圈圈完成签到 ,获得积分10
1分钟前
奶糖喵完成签到 ,获得积分10
1分钟前
sunflower完成签到,获得积分0
1分钟前
壮观的海豚完成签到 ,获得积分10
1分钟前
1分钟前
胖宏完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
离我远点完成签到 ,获得积分10
1分钟前
爱喝佳得乐完成签到,获得积分10
1分钟前
善善完成签到 ,获得积分10
1分钟前
1分钟前
lily336699发布了新的文献求助10
1分钟前
chen完成签到 ,获得积分10
1分钟前
健脊护柱完成签到 ,获得积分10
1分钟前
xiaoqi完成签到,获得积分10
2分钟前
哥哥发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349060
关于积分的说明 10341210
捐赠科研通 3065188
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600