DeltaDock: A Unified Framework for Accurate, Efficient, and Physically Reliable Molecular Docking

对接(动物) 计算机科学 计算生物学 生物 医学 护理部
作者
Jiaxian Yan,Zaixi Zhang,Jintao Zhu,Kai Zhang,Jianfeng Pei,Qi Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.11224
摘要

Molecular docking, a technique for predicting ligand binding poses, is crucial in structure-based drug design for understanding protein-ligand interactions. Recent advancements in docking methods, particularly those leveraging geometric deep learning (GDL), have demonstrated significant efficiency and accuracy advantages over traditional sampling methods. Despite these advancements, current methods are often tailored for specific docking settings, and limitations such as the neglect of protein side-chain structures, difficulties in handling large binding pockets, and challenges in predicting physically valid structures exist. To accommodate various docking settings and achieve accurate, efficient, and physically reliable docking, we propose a novel two-stage docking framework, DeltaDock, consisting of pocket prediction and site-specific docking. We innovatively reframe the pocket prediction task as a pocket-ligand alignment problem rather than direct prediction in the first stage. Then we follow a bi-level coarse-to-fine iterative refinement process to perform site-specific docking. Comprehensive experiments demonstrate the superior performance of DeltaDock. Notably, in the blind docking setting, DeltaDock achieves a 31\% relative improvement over the docking success rate compared with the previous state-of-the-art GDL model. With the consideration of physical validity, this improvement increases to about 300\%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
内向绿竹应助ABCDEFG采纳,获得10
1秒前
大胆的迎夏完成签到 ,获得积分10
1秒前
2秒前
材料打工人完成签到 ,获得积分10
2秒前
Pumpkin应助kjh采纳,获得10
3秒前
糊涂涂完成签到,获得积分10
4秒前
自由宛筠发布了新的文献求助10
4秒前
tiger发布了新的文献求助10
5秒前
5秒前
文静灵阳发布了新的文献求助10
5秒前
langjidong发布了新的文献求助30
5秒前
111完成签到,获得积分10
5秒前
纷纷完成签到 ,获得积分10
6秒前
乐乐应助梦醒时见你采纳,获得30
6秒前
ScholarZmm完成签到,获得积分10
7秒前
大仙儿发布了新的文献求助10
8秒前
BiuBiuBiu完成签到 ,获得积分10
8秒前
娜行完成签到 ,获得积分10
8秒前
9秒前
羊羊完成签到,获得积分20
10秒前
11秒前
优雅的鲂完成签到,获得积分10
11秒前
搜集达人应助坚定小松鼠采纳,获得10
11秒前
wanci应助孙煜采纳,获得10
11秒前
tlggg完成签到,获得积分10
12秒前
13秒前
Ava应助自由宛筠采纳,获得10
15秒前
夜已深发布了新的文献求助10
16秒前
16秒前
FashionBoy应助Freya采纳,获得10
17秒前
慕青应助zhx245259630采纳,获得10
18秒前
薛定谔的猴儿完成签到,获得积分10
18秒前
杰克完成签到,获得积分10
19秒前
19秒前
强壮的美女完成签到,获得积分10
20秒前
chichenglin发布了新的文献求助10
20秒前
22秒前
kingwill应助王军采纳,获得20
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761