Improvement of the Quantification of Epistemic Uncertainty Using Single‐Station Ground‐Motion Prediction Equations

残余物 不确定度量化 图表 光谱加速度 概率逻辑 差异(会计) 地震灾害 西格玛 标准差 地震动 统计 数学 环境科学 地质学 算法 地震学 峰值地面加速度 物理 会计 业务 量子力学
作者
Chih‐Hsuan Sung,Chyi-Tyi Lee
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:109 (4): 1358-1377 被引量:6
标识
DOI:10.1785/0120180044
摘要

Abstract The results of probabilistic seismic hazard analysis (PSHA) are sensitive to the standard deviation of the residuals of the ground‐motion prediction equations (GMPEs), especially for long‐return periods. Recent studies have proven that the epistemic uncertainty should be incorporated into PSHA using a logic‐tree method instead of mixing it with the aleatory variability. In this study, we propose using single‐station GMPEs with a novel approach (an epistemic‐residual diagram) to improve the quantification of epistemic uncertainty per station. The single‐station attenuation model is established from the observational recordings of a single station, hence, site‐to‐site variability (σS) can be ignored. We use 20,006 records of 497 crustal earthquakes with moment magnitudes (Mw) greater than 4.0, obtained from the Taiwan Strong Motion Instrumentation Program network, to build the single‐station GMPEs for 570 stations showing the peak ground acceleration (PGA) and spectral accelerations. A comparison is made between the total sigma of the regional GMPE (σT), the single‐station sigma of the regional GMPE as estimated by the variance decomposition method (σSS), and the sigma of single‐station GMPEs (σSS,S), for different periods. For most stations (70%), the σSS,S is about 20%–50% smaller than the σT. Furthermore, we adopt the epistemic‐residual diagram to separate the σSS,S into the epistemic uncertainty (σEP,S) and the remaining unexplained variability (σSP,S) for each station. The results show that in most areas, the σSP,S for the PGA is about 50%–80% smaller than the σT. Finally, the variations in the various sigma and model coefficients are mapped with the geographical locations of the stations for analysis of different regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mhj13810发布了新的文献求助10
刚刚
C60完成签到,获得积分10
2秒前
tim发布了新的文献求助10
4秒前
wanci应助好学采纳,获得10
4秒前
杨一乐发布了新的文献求助10
4秒前
爆米花应助薛晓博采纳,获得10
5秒前
舒心雨发布了新的文献求助20
5秒前
6秒前
7秒前
7秒前
peanut完成签到 ,获得积分10
10秒前
深情安青应助标致诗蕾采纳,获得10
10秒前
韩凡发布了新的文献求助10
10秒前
doctorhyh完成签到,获得积分10
12秒前
12秒前
彼方尚有荣光在完成签到 ,获得积分10
13秒前
14秒前
Jyy77完成签到 ,获得积分10
15秒前
碧蓝毛豆完成签到 ,获得积分10
16秒前
18秒前
YOKO发布了新的文献求助10
19秒前
20秒前
21秒前
好学发布了新的文献求助10
23秒前
24秒前
xhy完成签到,获得积分20
24秒前
123发布了新的文献求助10
26秒前
li发布了新的文献求助10
26秒前
tim完成签到,获得积分10
27秒前
YOKO完成签到,获得积分10
27秒前
王越发布了新的文献求助10
29秒前
标致诗蕾完成签到,获得积分10
30秒前
科研通AI5应助xhy采纳,获得10
31秒前
科研通AI5应助bobo采纳,获得10
31秒前
32秒前
标致诗蕾发布了新的文献求助10
36秒前
36秒前
强健的雅绿完成签到,获得积分10
38秒前
三三完成签到 ,获得积分10
41秒前
健康幸福平安完成签到,获得积分10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572