Analysis of the Basal Plane Dislocation Density and Thermomechanical Stress during 100 mm PVT Growth of 4H-SiC

材料科学 腐蚀坑密度 位错 薄脆饼 碳化硅 复合材料 Crystal(编程语言) 蚀刻(微加工) 晶种 二极管 光电子学 同步加速器 光学 单晶 结晶学 物理 化学 程序设计语言 图层(电子) 计算机科学
作者
Johannes Steiner,Melissa Roder,Binh Duong Nguyen,Stefan Sandfeld,A.N. Danilewsky,Peter J. Wellmann
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2207-2207 被引量:16
标识
DOI:10.3390/ma12132207
摘要

Basal plane dislocations (BPDs) in 4H silicon carbide (SiC) crystals grown using the physical vapor transport (PVT) method are diminishing the performance of SiC-based power electronic devices such as pn-junction diodes or MOSFETs. Therefore, understanding the generation and movement of BPDs is crucial to grow SiC suitable for device manufacturing. In this paper, the impact of the cooldown step in PVT-growth on the defect distribution is investigated utilizing two similar SiC seeds and identical growth parameters except for a cooldown duration of 40 h and 70 h, respectively. The two resulting crystals were cut into wafers, which were characterized by birefringence imaging and KOH etching. The initial defect distribution of the seed wafer was characterized by synchrotron white beam X-ray topography (SWXRT) mapping. It was found that the BPD density increases with a prolonged cooldown time. Furthermore, small angle grain boundaries based on threading edge dislocation (TED) arrays, which are normally only inherited by the seed, were also generated in the case of the crystal cooled down in 70 h. The role of temperature gradients inside the crystal during growth and post-growth concerning the generation of shear stress is discussed and supported by numerical calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛应助科研通管家采纳,获得10
1秒前
不想干活应助科研通管家采纳,获得10
1秒前
安雨笙应助科研通管家采纳,获得10
1秒前
Enso发布了新的文献求助20
1秒前
1秒前
xjcy应助科研通管家采纳,获得10
1秒前
千尺焰应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
彳亍1117应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
xjcy应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得30
2秒前
安雨笙应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得50
2秒前
Sea_U应助科研通管家采纳,获得10
2秒前
2秒前
xjcy应助科研通管家采纳,获得10
2秒前
Meyako应助科研通管家采纳,获得10
2秒前
安雨笙应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
3秒前
千尺焰应助科研通管家采纳,获得10
3秒前
3秒前
健康的夏青完成签到,获得积分10
4秒前
4秒前
万能图书馆应助Microgan采纳,获得10
5秒前
SY完成签到,获得积分10
5秒前
科研通AI5应助沈书采纳,获得10
5秒前
西出阳关完成签到,获得积分10
5秒前
完美麦片完成签到,获得积分10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4307003
求助须知:如何正确求助?哪些是违规求助? 3829141
关于积分的说明 11982276
捐赠科研通 3469763
什么是DOI,文献DOI怎么找? 1902712
邀请新用户注册赠送积分活动 950152
科研通“疑难数据库(出版商)”最低求助积分说明 852058