Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data

预警系统 工具箱 多样性(控制论) 计算机科学 过渡(遗传学) 系列(地层学) 航程(航空) 数据挖掘 时间序列 数据科学 机器学习 人工智能 生物 工程类 航空航天工程 基因 电信 古生物学 程序设计语言 生物化学
作者
Vasilis Dakos,Stephen R. Carpenter,William A. Brock,Aaron M. Ellison,Vishwesha Guttal,Anthony R. Ives,Sonia Kéfi,Valerie N. Livina,David A. Seekell,Egbert H. van Nes,Marten Scheffer
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:7 (7): e41010-e41010 被引量:613
标识
DOI:10.1371/journal.pone.0041010
摘要

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
3秒前
gexzygg应助victormanboy3采纳,获得10
3秒前
w_tiger完成签到 ,获得积分10
3秒前
论文顺利发布了新的文献求助30
4秒前
4秒前
开心尔芙完成签到,获得积分20
4秒前
weerfi完成签到,获得积分10
4秒前
云宝发布了新的文献求助10
5秒前
5秒前
芋泥啵啵发布了新的文献求助10
8秒前
瘦瘦妖妖发布了新的文献求助10
9秒前
OlinaBFU完成签到,获得积分10
10秒前
生动的凡发布了新的文献求助10
10秒前
11秒前
13秒前
Lanyiyang完成签到,获得积分10
14秒前
科研通AI5应助英勇善愁采纳,获得30
15秒前
大爱仙尊发布了新的文献求助10
15秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得40
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
19秒前
酷波er应助热情无春采纳,获得10
20秒前
20秒前
Haibrar发布了新的文献求助10
21秒前
研友_VZG7GZ应助梨子LZBL采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4267960
求助须知:如何正确求助?哪些是违规求助? 3799207
关于积分的说明 11908596
捐赠科研通 3445991
什么是DOI,文献DOI怎么找? 1890464
邀请新用户注册赠送积分活动 941240
科研通“疑难数据库(出版商)”最低求助积分说明 845509