Generalized Collinearity Diagnostics

共线性 数学 统计 应用数学
作者
John Fox,Georges Monette
标识
DOI:10.1080/01621459.1992.10475190
摘要

Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (denoted by β 1, with the associated columns of X given by X 1). The essential idea underlying this generalization is to examine the impact on the precision of estimation—in particular, the size of an ellipsoidal joint confidence region for β 1—of less-than-optimal selection of other columns of the design matrix (X 2), treating still other columns (X 0) as unalterable, even hypothetically. In typical applications, X 1 contains a set of dummy regressors coding categories of a qualitative variable or a set of polynomial regressors in a quantitative variable; X 2 contains all other regressors in the model, save the constant, which is in X 0. If σ 2 V denotes the realized variance of , and σ 2 U is the variance associated with an optimal selection of X 2, then the corresponding scaled dispersion ellipsoids to be compared are ℰ v = {x : x′V –1 x ≤ 1} and ℰ U = {x : x′U –1 x ≤ 1}, where ℰ U is contained in ℰ v . The two ellipsoids can be compared by considering the radii of ℰ v relative to ℰ U , obtained through the spectral decomposition of V relative to U. We proceed to explore the geometry of generalized variance inflation, to show the relationship of these measures to correlation-matrix determinants and canonical correlations, to consider X matrices structured by relations of marginality among regressor subspaces, to develop the relationship of generalized variance inflation to hypothesis tests in the multivariate normal linear model, and to present several examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HJJHJH发布了新的文献求助20
刚刚
22222发布了新的文献求助20
1秒前
4秒前
5秒前
香蕉子骞完成签到 ,获得积分10
6秒前
慕青应助cc采纳,获得10
7秒前
充电宝应助北北北采纳,获得10
8秒前
YABC发布了新的文献求助10
10秒前
11秒前
海鸥跳海完成签到,获得积分10
11秒前
12秒前
my完成签到,获得积分10
14秒前
陈林的爹发布了新的文献求助10
14秒前
17秒前
17秒前
19秒前
领导范儿应助陈林的爹采纳,获得10
19秒前
清爽熊猫完成签到,获得积分10
19秒前
cc发布了新的文献求助10
20秒前
bug完成签到 ,获得积分10
20秒前
积极的逍遥完成签到,获得积分10
22秒前
插线板完成签到 ,获得积分10
23秒前
北北北发布了新的文献求助10
24秒前
YABC完成签到,获得积分20
25秒前
26秒前
26秒前
所所应助科研通管家采纳,获得10
27秒前
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
研友_Y59785应助科研通管家采纳,获得10
27秒前
ee完成签到,获得积分10
28秒前
29秒前
汉堡包应助weiyi采纳,获得10
30秒前
快乐的翠柏完成签到,获得积分10
30秒前
RockRedfoo完成签到 ,获得积分10
30秒前
35秒前
ch发布了新的文献求助10
36秒前
jsnd完成签到,获得积分10
37秒前
SSS完成签到,获得积分10
38秒前
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139