已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing the deployment of electric vehicle charging stations using pervasive mobility data

计算机科学 软件部署 充电站 架空(工程) 稳健性(进化) 网格 实时计算 电动汽车 遗传算法 模拟 生物化学 操作系统 量子力学 物理 功率(物理) 基因 机器学习 数学 几何学 化学
作者
Mohammad M. Vazifeh,Hongmou Zhang,Paolo Santi,Carlo Ratti
出处
期刊:Transportation Research Part A-policy and Practice [Elsevier]
卷期号:121: 75-91 被引量:120
标识
DOI:10.1016/j.tra.2019.01.002
摘要

With recent advances in battery technology and the resulting decrease in the charging times, public charging stations are becoming a viable option for Electric Vehicle (EV) drivers. Concurrently, wide-spread use of location-tracking devices in mobile phones and wearable devices makes it possible to track individual-level human movements to an unprecedented spatial and temporal grain. Motivated by these developments, we propose a novel methodology to perform data-driven optimization of EV charging stations location. We formulate the problem as a discrete optimization problem on a geographical grid, with the objective of covering the entire demand region while minimizing a measure of drivers' discomfort. Since optimally solving the problem is computationally infeasible, we present computationally efficient, near-optimal solutions based on greedy and genetic algorithms. We then apply the proposed methodology to optimize EV charging stations location in the city of Boston, starting from a massive cellular phone data sets covering 1 million users over 4 months. Results show that genetic algorithm based optimization provides the best solutions in terms of drivers' discomfort and the number of charging stations required, which are both reduced about 10 percent as compared to a randomized solution. We further investigate robustness of the proposed data-driven methodology, showing that, building upon well-known regularity of aggregate human mobility patterns, the near-optimal solution computed using single day movements preserves its properties also in later months. When collectively considered, the results presented in this paper clearly indicate the potential of data-driven approaches for optimally locating public charging facilities at the urban scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电中321完成签到,获得积分10
刚刚
Zero完成签到,获得积分10
1秒前
5秒前
8秒前
8秒前
3949870237发布了新的文献求助10
10秒前
14秒前
Honor完成签到 ,获得积分10
15秒前
3949870237完成签到,获得积分20
15秒前
15秒前
Neuronguy发布了新的文献求助10
15秒前
jia完成签到,获得积分10
15秒前
cece发布了新的文献求助10
17秒前
by发布了新的文献求助10
17秒前
wang完成签到 ,获得积分10
20秒前
古渡应助科研通管家采纳,获得10
20秒前
古渡应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
Pauline完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
古渡应助科研通管家采纳,获得10
21秒前
Neuronguy完成签到,获得积分10
21秒前
22秒前
24秒前
bkagyin应助无私妙菡采纳,获得10
25秒前
CC完成签到,获得积分10
28秒前
花陵发布了新的文献求助10
29秒前
33秒前
科研通AI6应助by采纳,获得10
33秒前
无私妙菡完成签到,获得积分10
34秒前
沉静乾完成签到,获得积分10
37秒前
Willer完成签到,获得积分10
37秒前
无私妙菡发布了新的文献求助10
38秒前
39秒前
自然如冰发布了新的文献求助10
45秒前
想游泳的鹰完成签到,获得积分10
45秒前
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270