Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method

正规化(语言学) 全变差去噪 算法 线性化 迭代重建 计算 数学 数学优化 缩小 计算机科学 图像(数学) 人工智能 非线性系统 物理 量子力学
作者
Jianlin Chen,Linyuan Wang,Bin Yan,Hanming Zhang,Genyang Cheng
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:23 (6): 683-699 被引量:9
标识
DOI:10.3233/xst-150521
摘要

Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
s2183622完成签到,获得积分10
2秒前
4秒前
4秒前
默默琳完成签到,获得积分10
5秒前
Wian发布了新的文献求助10
6秒前
尔信完成签到 ,获得积分10
6秒前
icel完成签到,获得积分10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研助手6应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
李健应助PMX采纳,获得10
7秒前
动漫大师发布了新的文献求助10
9秒前
黄可以完成签到,获得积分10
9秒前
11秒前
3237924531发布了新的文献求助10
14秒前
Cc8完成签到,获得积分10
14秒前
llg发布了新的文献求助10
18秒前
sen123完成签到,获得积分10
19秒前
20秒前
段段发布了新的文献求助10
25秒前
29秒前
无花果应助霸气的梦露采纳,获得10
29秒前
cdercder应助清新的音响采纳,获得10
30秒前
调皮静竹发布了新的文献求助10
30秒前
32秒前
小AB发布了新的文献求助10
32秒前
32秒前
34秒前
36秒前
Tonald Yang发布了新的文献求助10
38秒前
38秒前
38秒前
开放映冬完成签到,获得积分10
39秒前
感性的芹菜完成签到,获得积分10
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339