已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Decision-Making Strategy for Connected and Autonomous Vehicles in Highway On-Ramp Merging

计算机科学 人工智能
作者
Zine el abidine Kherroubi,Samir Aknine,Rebiha Bacha
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 12490-12502 被引量:50
标识
DOI:10.1109/tits.2021.3114983
摘要

High-speed highway on-ramp merging is a significant challenge toward realizing fully automated driving ( level 4 ). Connected Autonomous Vehicles ( CAVs ), that combine communication and autonomous driving technologies, may improve greatly the safety performances when performing highway on-ramp merging. However, even with the emergence of CAVs , some keys constraints should be considered to achieve a safe on-ramp merging. First, human-driven vehicles will still be present on the road, and it may take decades before all the commercialized vehicles will be fully autonomous and connected. Also, onboard vehicle sensors may provide inaccurate or incomplete data due to sensors limitations and blind spots, especially in such critical situations. To resolve these issues, the present work introduces a novel solution that uses an off-board Road-Side Unit ( RSU ) to realize fully automated highway on-ramp merging for connected and automated vehicles. Our proposed approach is based on an Artificial Neural Network (ANN) to predict drivers' intentions. This prediction is used as an input state to a Deep Reinforcement Learning ( DRL ) agent that outputs the longitudinal acceleration for the merging vehicle. To achieve this, we first propose a data-driven model that can predict the behavior of the human-driven vehicles in the main highway lane, with 99 % accuracy. We use the output of this model as input state to train a Twin Delayed Deep Deterministic Policy Gradients ( TD3 ) agent that learns " safe " and " cooperative " driving policy to perform highway on-ramp merging. We show that our proposed decision-making strategy improves performance compared to the solutions proposed previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦啦完成签到,获得积分10
刚刚
3秒前
你你你完成签到,获得积分10
3秒前
WoeL.Aug.11完成签到 ,获得积分10
5秒前
平常的兔子完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
8秒前
开朗山水完成签到 ,获得积分10
12秒前
candice624完成签到 ,获得积分10
13秒前
锦鲤完成签到 ,获得积分10
13秒前
lyy完成签到 ,获得积分10
13秒前
wanci应助puhong zhang采纳,获得10
14秒前
集典完成签到 ,获得积分10
16秒前
eric888应助俭朴初蝶采纳,获得30
17秒前
追梦少年应助Kannan采纳,获得10
20秒前
乐乐应助酷炫的安青采纳,获得10
21秒前
11完成签到,获得积分10
22秒前
NexusExplorer应助YML采纳,获得10
24秒前
wuminhui完成签到,获得积分10
26秒前
AshDawn完成签到,获得积分10
27秒前
29秒前
刘国建郭菱香完成签到 ,获得积分10
30秒前
龚宇完成签到,获得积分10
30秒前
36秒前
jjlyy发布了新的文献求助10
42秒前
wanhe发布了新的文献求助10
44秒前
fang完成签到 ,获得积分10
50秒前
52秒前
宓人英完成签到 ,获得积分10
54秒前
以菱完成签到 ,获得积分10
55秒前
55秒前
迅速初柳发布了新的文献求助10
58秒前
科目三应助呼延曼青采纳,获得10
1分钟前
1分钟前
wzm完成签到,获得积分10
1分钟前
1分钟前
水悟子完成签到,获得积分10
1分钟前
研友_VZG7GZ应助serein采纳,获得10
1分钟前
核桃应助wzm采纳,获得10
1分钟前
专注寻菱完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921971
求助须知:如何正确求助?哪些是违规求助? 3466770
关于积分的说明 10944871
捐赠科研通 3195639
什么是DOI,文献DOI怎么找? 1765730
邀请新用户注册赠送积分活动 855677
科研通“疑难数据库(出版商)”最低求助积分说明 795039