Convolutional Multiple Instance Learning for Sleep Spindle Detection With Label Refinement

计算机科学 卷积神经网络 人工智能 特征(语言学) 特征学习 模式识别(心理学) 深度学习 机器学习 特征提取 哲学 语言学
作者
Xuyun Sun,Yu Qi,Yueming Wang,Gang Pan
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (1): 272-284 被引量:5
标识
DOI:10.1109/tcds.2022.3159285
摘要

Sleep spindles are closely associated with cognitive functions and neurological disorders; thus, spindle detection has been an important topic in sleep medicine. Recently, machine learning approaches have shown the potential in automatic sleep spindle detection by learning optimized features in a data-driven way, while they highly rely on labeled data, and the performance can be degraded when labels are inaccurate. However, accurate annotation of the spindle is usually difficult to obtain and high intraexpert and interexpert variance exist. In this work, we propose a convolutional neural network (CNN) with a label refinement component to learn an effective spindle detector with imperfect labels. Our approach consists of two stages: 1) a feature learning stage and 2) a label refinement stage. In the feature learning stage, a CNN-based multiple instance learning framework (CNN-MIL) is built for spindle feature learning. By assuming only parts of each labeled spindle segment contain true spindle patterns, the CNN-MIL model can learn most-likely spindle-related features from ambiguous labels. In the label refinement stage, we adjust the spindle labels by merging the original labels and labels predicted by CNN-MIL, and the modified labels are then used in the next round CNN-MIL feature learning. The two stages perform alternately for detector optimization. Extensive experiments demonstrated that our approach achieved the state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc完成签到,获得积分10
1秒前
Yan0909完成签到,获得积分10
1秒前
1秒前
洞两完成签到,获得积分10
1秒前
DrWang完成签到,获得积分10
2秒前
2秒前
2秒前
太空人完成签到,获得积分10
3秒前
Yange完成签到,获得积分10
3秒前
文艺的竺完成签到,获得积分10
3秒前
诗图完成签到,获得积分10
3秒前
希望天下0贩的0完成签到,获得积分0
3秒前
3秒前
4秒前
清时.完成签到 ,获得积分10
4秒前
甜蜜寄文完成签到 ,获得积分10
5秒前
xphpyy发布了新的文献求助10
6秒前
Qkk完成签到,获得积分10
6秒前
张美丽完成签到,获得积分10
6秒前
6秒前
兴奋的定帮应助星川采纳,获得10
6秒前
ludong_0应助星川采纳,获得10
6秒前
DijiaXu应助星川采纳,获得10
6秒前
可乐加冰完成签到,获得积分10
7秒前
希望天下0贩的0应助Nancy采纳,获得10
7秒前
子车茗应助study采纳,获得30
8秒前
不要引力发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
优美熠悦发布了新的文献求助10
11秒前
JamesPei应助DrWang采纳,获得10
11秒前
iFaceDOG完成签到,获得积分10
11秒前
仙魔洞发布了新的文献求助30
11秒前
11秒前
12秒前
花痴的绮完成签到,获得积分10
12秒前
sin完成签到,获得积分10
12秒前
小李子完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4002068
求助须知:如何正确求助?哪些是违规求助? 3541474
关于积分的说明 11281536
捐赠科研通 3279013
什么是DOI,文献DOI怎么找? 1808246
邀请新用户注册赠送积分活动 884529
科研通“疑难数据库(出版商)”最低求助积分说明 810431