Prediagnostic expressions in health records predict mortality in Parkinson's disease: A proof-of-concept study

危险系数 医学 比例危险模型 内科学 疾病 肿瘤科 置信区间
作者
Tomi Kuusimäki,Jani Sainio,Samu Kurki,Tero Vahlberg,Valtteri Kaasinen
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:95: 35-39 被引量:3
标识
DOI:10.1016/j.parkreldis.2021.12.015
摘要

The relationship of prodromal markers of PD with PD mortality is unclear. Electronic health records (EHRs) provide a large source of raw data that could be useful in the identification of novel relevant prognostic factors in PD. We aimed to provide a proof of concept for automated data mining and pattern recognition of EHRs of PD patients and to study associations between prodromal markers and PD mortality.Data from EHRs of PD patients (n = 2522) were collected from the Turku University Hospital database between 2006 and 2016. The data contained >27 million words/numbers and >750000 unique expressions. The 5000 most common words were identified in three-year time period before PD diagnosis. Cox regression was used to investigate the association of expressions with the 5-year survival of PD patients.During the five-year period after PD diagnosis, 839 patients died (33.3%). If expressions associated with psychosis/hallucinations were identified within 3 years before the diagnosis, worse survival was observed (hazard ratio = 1.71, 95%CI = 1.46-1.99, p < 0.001). Similar effects were observed for words associated with cognition (1.23, 1.05-1.43, p = 0.009), constipation (1.34, 1.15-1.56, p = 0.0002) and pain (1.34, 1.12-1.60, p = 0.001).Automated mining of EHRs can predict relevant clinical outcomes in PD. The approach can identify factors that have previously been associated with survival and detect novel associations, as observed in the link between poor survival and prediagnostic pain. The significance of early pain in PD prognosis should be the focus of future studies with alternate methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
会有椛海吗完成签到,获得积分10
2秒前
2秒前
酷波er应助健壮的飞烟采纳,获得10
2秒前
3秒前
yyds发布了新的文献求助10
3秒前
cy发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
wwwccc发布了新的文献求助10
7秒前
蝉鸣完成签到,获得积分10
7秒前
9秒前
晚风完成签到,获得积分10
9秒前
9秒前
赤恩发布了新的文献求助10
10秒前
今后应助荷兰香猪采纳,获得10
12秒前
忽闻水完成签到,获得积分10
13秒前
van发布了新的文献求助10
14秒前
xuanzhezhou发布了新的文献求助10
14秒前
xxx发布了新的文献求助10
14秒前
yyds完成签到,获得积分10
15秒前
哈哈环完成签到 ,获得积分10
16秒前
陈皮完成签到,获得积分20
16秒前
16秒前
领导范儿应助辛勤芷天采纳,获得10
16秒前
于大本事发布了新的文献求助10
17秒前
17秒前
Hello应助加缪采纳,获得100
19秒前
21秒前
24秒前
24秒前
李健的小迷弟应助赤恩采纳,获得10
25秒前
hugeyoung发布了新的文献求助10
26秒前
Veson发布了新的文献求助10
28秒前
van完成签到,获得积分10
29秒前
30秒前
辛勤芷天发布了新的文献求助10
30秒前
牡丹花下发布了新的文献求助10
31秒前
莫西莫西发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4749825
求助须知:如何正确求助?哪些是违规求助? 4096113
关于积分的说明 12673089
捐赠科研通 3808528
什么是DOI,文献DOI怎么找? 2102537
邀请新用户注册赠送积分活动 1127752
关于科研通互助平台的介绍 1004484