Prediagnostic expressions in health records predict mortality in Parkinson's disease: A proof-of-concept study

危险系数 医学 比例危险模型 内科学 疾病 肿瘤科 置信区间
作者
Tomi Kuusimäki,Jani Sainio,Samu Kurki,Tero Vahlberg,Valtteri Kaasinen
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:95: 35-39 被引量:3
标识
DOI:10.1016/j.parkreldis.2021.12.015
摘要

The relationship of prodromal markers of PD with PD mortality is unclear. Electronic health records (EHRs) provide a large source of raw data that could be useful in the identification of novel relevant prognostic factors in PD. We aimed to provide a proof of concept for automated data mining and pattern recognition of EHRs of PD patients and to study associations between prodromal markers and PD mortality.Data from EHRs of PD patients (n = 2522) were collected from the Turku University Hospital database between 2006 and 2016. The data contained >27 million words/numbers and >750000 unique expressions. The 5000 most common words were identified in three-year time period before PD diagnosis. Cox regression was used to investigate the association of expressions with the 5-year survival of PD patients.During the five-year period after PD diagnosis, 839 patients died (33.3%). If expressions associated with psychosis/hallucinations were identified within 3 years before the diagnosis, worse survival was observed (hazard ratio = 1.71, 95%CI = 1.46-1.99, p < 0.001). Similar effects were observed for words associated with cognition (1.23, 1.05-1.43, p = 0.009), constipation (1.34, 1.15-1.56, p = 0.0002) and pain (1.34, 1.12-1.60, p = 0.001).Automated mining of EHRs can predict relevant clinical outcomes in PD. The approach can identify factors that have previously been associated with survival and detect novel associations, as observed in the link between poor survival and prediagnostic pain. The significance of early pain in PD prognosis should be the focus of future studies with alternate methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
犹豫的世倌完成签到,获得积分10
1秒前
maruko_xlyao发布了新的文献求助10
1秒前
1秒前
1秒前
chentong完成签到,获得积分10
2秒前
2秒前
种草发布了新的文献求助10
2秒前
星辰大海应助多喝水采纳,获得10
2秒前
EKo完成签到,获得积分10
2秒前
3秒前
3秒前
ANN完成签到,获得积分10
4秒前
缥缈纲完成签到,获得积分10
4秒前
Georges-09发布了新的文献求助10
4秒前
777发布了新的文献求助10
4秒前
忐忑的惜天完成签到,获得积分10
5秒前
老迟到的问安给老迟到的问安的求助进行了留言
6秒前
6秒前
6秒前
7秒前
复杂的蛋挞完成签到 ,获得积分10
7秒前
linus完成签到,获得积分10
8秒前
纷纷故事发布了新的文献求助10
8秒前
子非鱼pzz发布了新的文献求助10
9秒前
monthli完成签到,获得积分10
9秒前
咕噜仔发布了新的文献求助10
9秒前
10秒前
sun完成签到,获得积分10
10秒前
11秒前
yulili发布了新的文献求助10
12秒前
愉快道之完成签到 ,获得积分10
12秒前
感冒了发布了新的文献求助10
12秒前
pepsisery完成签到,获得积分10
12秒前
Orange应助西部菱斑响尾蛇采纳,获得30
12秒前
河西完成签到,获得积分10
13秒前
可爱的函函应助ddd采纳,获得10
13秒前
time完成签到,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4179117
求助须知:如何正确求助?哪些是违规求助? 3714521
关于积分的说明 11710326
捐赠科研通 3395529
什么是DOI,文献DOI怎么找? 1862849
邀请新用户注册赠送积分活动 921501
科研通“疑难数据库(出版商)”最低求助积分说明 833299