Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches

城市热岛 环境科学 白天 土地覆盖 线性回归 气候学 回归分析 气象学 人口 比例(比率) 大气科学 地理 土地利用 统计 地图学 数学 工程类 人口学 土木工程 社会学 地质学
作者
Gabriel Yoshikazu Oukawa,Patricia Krecl,Admir Créso Targino
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:815: 152836-152836 被引量:141
标识
DOI:10.1016/j.scitotenv.2021.152836
摘要

Characterizing the spatiotemporal variability of the Urban Heat Island (UHI) and its drivers is a key step in leveraging thermal comfort to create not only healthier cities, but also to enhance urban resilience to climate change. In this study, we developed specific daytime and nighttime multiple linear regression (MLR) and random forest (RF) models to analyze and predict the spatiotemporal evolution of the Urban Heat Island intensity (UHII), using the air temperature (Tair) as the response variable. We profited from the wealth of in situ Tair data and a comprehensive pool of predictors variables - including land cover, population, traffic, urban geometry, weather data and atmospheric vertical indices. Cluster analysis divided the study period into three main groups, each dominated by a combination of weather systems that, in turn, influenced the onset and strength of the UHII. Anticyclonic circulations favored the emergence of the largest UHII (hourly mean of 5.06 °C), while cyclonic circulations dampened its development. The MLR models were only able to explain a modest percentage of variance (64 and 34% for daytime and nighttime, respectively), which we interpret as part of their inability to capture key factors controlling Tair. The RF models, on the other hand, performed considerably better, with explanatory power over 96% of the variance for daytime and nighttime conditions, capturing and mapping the fine-scale Tair spatiotemporal variability in both periods and under each cluster condition. The feature importance analysis showed that the meteorological variables and the land cover were the main predictors of the Tair. Urban planners could benefit from these results, using the high-performing RF models as a robust framework for forecasting and mitigating the effects of the UHI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的冰露完成签到 ,获得积分10
2秒前
3秒前
Haley完成签到,获得积分10
5秒前
jzs完成签到 ,获得积分10
8秒前
开心绫发布了新的文献求助10
9秒前
轻松靖仇完成签到,获得积分10
9秒前
wy.he应助Meizoso采纳,获得10
9秒前
11秒前
光之霓裳完成签到 ,获得积分10
13秒前
14秒前
CodeCraft应助Peppermint采纳,获得10
14秒前
嗯嗯完成签到 ,获得积分10
16秒前
Aria完成签到,获得积分20
16秒前
安详凡发布了新的文献求助10
19秒前
Jenny驳回了所所应助
19秒前
22秒前
23秒前
24秒前
整齐小猫咪完成签到,获得积分10
24秒前
Dritsw应助开心绫采纳,获得10
24秒前
武大聪明丶完成签到,获得积分10
24秒前
DQY完成签到,获得积分10
26秒前
Peppermint发布了新的文献求助10
29秒前
mublake发布了新的文献求助10
29秒前
小鱼儿发布了新的文献求助10
29秒前
xdd发布了新的文献求助100
29秒前
77完成签到,获得积分10
30秒前
Jasper应助Aria采纳,获得10
31秒前
爱丽丝很学术完成签到,获得积分10
32秒前
淡然的芷荷完成签到 ,获得积分10
33秒前
mublake完成签到,获得积分10
33秒前
35秒前
激动的爆米花完成签到,获得积分20
35秒前
Peppermint完成签到,获得积分10
35秒前
36秒前
36秒前
李健的粉丝团团长应助xrhk采纳,获得30
38秒前
脑洞疼应助lyn采纳,获得10
39秒前
武大聪明丶关注了科研通微信公众号
39秒前
松子儿hhh完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357