Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques

铸造 材料科学 合金 Boosting(机器学习) 微观结构 计算机科学 机械工程 冶金 人工智能 工程类
作者
Yi Wang,Guangchen Liu,Jianbao Gao,Lijun Zhang
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:21
标识
DOI:10.20517/jmi.2021.10
摘要

Casting aluminum alloys are commonly used in industries due to their excellent comprehensive performance. Alloying/microalloying and post-solidification heat treatments are the most common measures to tune the microstructure for enhancing their mechanical properties. However, it is very challenging to achieve accurate and efficient development of novel casting aluminum alloys using the traditional trial-and-error method. With the rapid development of computer technology, the computational thermodynamics (CT) in the framework of the CALculation of PHAse Diagram approach, the data-driven machine learning (ML) technique, and also their combinations have been proved to be effective approaches for the design of casting aluminum alloys. In this review, the state-of-the-art computational alloy design approaches driven by CT and ML techniques, as well as their combinations, were comprehensively summarized. The current status of the thermodynamic database for aluminum alloys, as the core for CT, was also briefly introduced. After that, a variety of successful case studies on the design of different casting aluminum alloys driven by CT, ML, and their combinations were demonstrated, including common applications, CT-driven design of Sc-additional Al-Si-Mg series casting alloys, and design of Srmodified A356 alloys driven by combing CT and ML. Finally, the conclusions of this review were drawn, and perspectives for boosting the computational design approach driven by combining CT and ML techniques were pointed out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
terry完成签到,获得积分20
6秒前
荼蘼发布了新的文献求助10
6秒前
苹果曼香关注了科研通微信公众号
9秒前
默言晨曦发布了新的文献求助10
9秒前
9秒前
威武鞅完成签到,获得积分10
12秒前
14秒前
失眠醉易完成签到 ,获得积分10
16秒前
橙子慢慢来完成签到,获得积分10
17秒前
乐乐应助Archer采纳,获得10
21秒前
欢喜板凳发布了新的文献求助10
21秒前
23秒前
白夜完成签到,获得积分10
23秒前
勤恳马里奥完成签到,获得积分0
27秒前
苹果曼香发布了新的文献求助10
30秒前
超级无心完成签到,获得积分10
30秒前
尛森发布了新的文献求助10
32秒前
32秒前
盈月发布了新的文献求助10
34秒前
睡到人间煮饭时完成签到 ,获得积分10
34秒前
Archer发布了新的文献求助10
36秒前
38秒前
呆小仙完成签到,获得积分10
39秒前
bkagyin应助萨克麦迪采纳,获得10
40秒前
HUAN完成签到,获得积分10
42秒前
ssssss发布了新的文献求助10
43秒前
盈月完成签到,获得积分10
46秒前
英俊的铭应助西西采纳,获得10
47秒前
yexing完成签到,获得积分10
48秒前
Shao_Jq完成签到 ,获得积分10
48秒前
ssssss完成签到,获得积分20
52秒前
科研通AI5应助盈月采纳,获得10
52秒前
jenningseastera应助迟暮采纳,获得10
53秒前
阿匡发布了新的文献求助10
55秒前
55秒前
CodeCraft应助yinshaoyu21采纳,获得10
55秒前
OIC完成签到,获得积分10
56秒前
SnEBiotech完成签到 ,获得积分10
57秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557