Deep Learning–Based Digitally Reconstructed Tomography of the Chest in the Evaluation of Solitary Pulmonary Nodules: A Feasibility Study

医学 射线照相术 接收机工作特性 肺孤立结节 放射科 核医学 断层摄影术 计算机断层摄影术 磨玻璃样改变 腺癌 内科学 癌症
作者
Ayis Pyrros,Andrew Chen,Jorge Mario Rodríguez-Fernández,Stephen M. Borstelmann,Patrick Cole,Jeanne M. Horowitz,Jonathan H. Chung,Paul Nikolaidis,Viveka Boddipalli,Nasir Siddiqui,Melinda Willis,Adam E. Flanders,Sanmi Koyejo
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (4): 739-748 被引量:2
标识
DOI:10.1016/j.acra.2022.05.005
摘要

Computed tomography (CT) is preferred for evaluating solitary pulmonary nodules (SPNs) but access or availability may be lacking, in addition, overlapping anatomy can hinder detection of SPNs on chest radiographs. We developed and evaluated the clinical feasibility of a deep learning algorithm to generate digitally reconstructed tomography (DRT) images of the chest from digitally reconstructed frontal and lateral radiographs (DRRs) and use them to detect SPNs.This single-institution retrospective study included 637 patients with noncontrast helical CT of the chest (mean age 68 years, median age 69 years, standard deviation 11.7 years; 355 women) between 11/2012 and 12/2020, with SPNs measuring 10-30 mm. A deep learning model was trained on 562 patients, validated on 60 patients, and tested on the remaining 15 patients. Diagnostic performance (SPN detection) from planar radiography (DRRs and CT scanograms, PR) alone or with DRT was evaluated by two radiologists in an independent blinded fashion. The quality of the DRT SPN image in terms of nodule size and location, morphology, and opacity was also evaluated, and compared to the ground-truth CT images RESULTS: Diagnostic performance was higher from DRT plus PR than from PR alone (area under the receiver operating characteristic curve 0.95-0.98 versus 0.80-0.85; p < 0.05). DRT plus PR enabled diagnosis of SPNs in 11 more patients than PR alone. Interobserver agreement was 0.82 for DRT plus PR and 0.89 for PR alone; and interobserver agreement for size and location, morphology, and opacity of the DRT SPN was 0.94, 0.68, and 0.38, respectively.For SPN detection, DRT plus PR showed better diagnostic performance than PR alone. Deep learning can be used to generate DRT images and improve detection of SPNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
机灵夜云完成签到,获得积分10
刚刚
所所应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
cdercder应助科研通管家采纳,获得10
刚刚
cdercder应助科研通管家采纳,获得10
刚刚
刚刚
BOYA完成签到,获得积分10
1秒前
cccc1111111发布了新的文献求助10
1秒前
李健的小迷弟应助玥越采纳,获得10
2秒前
2秒前
2秒前
张小陈完成签到 ,获得积分10
3秒前
哒哒哒完成签到,获得积分10
3秒前
NMZN完成签到,获得积分10
4秒前
M1982完成签到,获得积分10
5秒前
芝麻球ii完成签到,获得积分10
6秒前
愉快尔烟完成签到,获得积分10
6秒前
ddd发布了新的文献求助10
6秒前
英俊的铭应助SYY采纳,获得10
6秒前
8秒前
mmm完成签到,获得积分10
8秒前
zzt发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
YMH完成签到,获得积分10
12秒前
TY完成签到,获得积分10
13秒前
llll完成签到,获得积分10
13秒前
暴躁的酸奶完成签到,获得积分10
13秒前
14秒前
认真以寒发布了新的文献求助10
14秒前
14秒前
zzz完成签到,获得积分10
14秒前
典雅的丹寒完成签到,获得积分10
15秒前
happyrrc完成签到,获得积分10
15秒前
mingjie完成签到,获得积分10
15秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264942
捐赠科研通 3049958
什么是DOI,文献DOI怎么找? 1673735
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549