A Bayesian-optimized design for an interpretable convolutional neural network to decode and analyze the P300 response in autism

可解释性 计算机科学 卷积神经网络 解码方法 人工智能 自闭症 贝叶斯优化 贝叶斯概率 自闭症谱系障碍 模式识别(心理学) 集合(抽象数据类型) 机器学习 算法 心理学 发展心理学 程序设计语言
作者
Davide Borra,Elisa Magosso,Miguel Castelo-Branco,Marco Simões
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (4): 046010-046010 被引量:5
标识
DOI:10.1088/1741-2552/ac7908
摘要

Objective.P300 can be analyzed in autism spectrum disorder (ASD) to derive biomarkers and can be decoded in brain-computer interfaces to reinforce ASD impaired skills. Convolutional neural networks (CNNs) have been proposed for P300 decoding, outperforming traditional algorithms but they (a) do not investigate optimal designs in different training conditions; (b) lack in interpretability. To overcome these limitations, an interpretable CNN (ICNN), that we recently proposed for motor decoding, has been modified and adopted here, with its optimal design searched via Bayesian optimization.Approach.The ICNN provides a straightforward interpretation of spectral and spatial features learned to decode P300. The Bayesian-optimized (BO) ICNN design was investigated separately for different training strategies (within-subject, within-session, and cross-subject) and BO models were used for the subsequent analyses. Specifically, transfer learning (TL) potentialities were investigated by assessing how pretrained cross-subject BO models performed on a new subject vs. random-initialized models. Furthermore, within-subject BO-derived models were combined with an explanation technique (ICNN + ET) to analyze P300 spectral and spatial features.Main results.The ICNN resulted comparable or even outperformed existing CNNs, at the same time being lighter. BO ICNN designs differed depending on the training strategy, needing more capacity as the training set variability increased. Furthermore, TL provided higher performance than networks trained from scratch. The ICNN + ET analysis suggested the frequency range [2, 5.8] Hz as the most relevant, and spatial features showed a right-hemispheric parietal asymmetry. The ICNN + ET-derived features, but not ERP-derived features, resulted significantly and highly correlated to autism diagnostic observation schedule clinical scores.Significance.This study substantiates the idea that a CNN can be designed both accurate and interpretable for P300 decoding, with an optimized design depending on the training condition. The novel ICNN-based analysis tool was able to better capture ASD neural signatures than traditional event-related potential analysis, possibly paving the way for identifying novel biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
2秒前
shh发布了新的文献求助10
2秒前
Patrick0614发布了新的文献求助10
2秒前
虚幻雁荷完成签到 ,获得积分10
4秒前
4秒前
Zero发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
neymar完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
OFish发布了新的文献求助10
11秒前
陈彦滨完成签到 ,获得积分10
12秒前
Innogen发布了新的文献求助10
12秒前
shh发布了新的文献求助10
14秒前
Rondab应助端庄的魔镜采纳,获得30
14秒前
Kintsugi发布了新的文献求助10
16秒前
Lxx完成签到,获得积分10
17秒前
zzz发布了新的文献求助10
17秒前
subay发布了新的文献求助10
18秒前
19秒前
19秒前
chengjie应助冯123采纳,获得10
20秒前
22秒前
22秒前
anny.white完成签到,获得积分10
22秒前
大舟Austin完成签到 ,获得积分10
22秒前
rachel03发布了新的文献求助10
23秒前
OFish完成签到,获得积分10
24秒前
badada发布了新的文献求助10
24秒前
丰富的不惜完成签到,获得积分10
24秒前
万能图书馆应助博修采纳,获得30
25秒前
嘿嘿应助岸上牛采纳,获得10
26秒前
shh发布了新的文献求助10
27秒前
28秒前
y懿发布了新的文献求助20
28秒前
DJDJ发布了新的文献求助10
29秒前
Masiying完成签到 ,获得积分10
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046349
求助须知:如何正确求助?哪些是违规求助? 3584050
关于积分的说明 11391298
捐赠科研通 3311575
什么是DOI,文献DOI怎么找? 1822221
邀请新用户注册赠送积分活动 894425
科研通“疑难数据库(出版商)”最低求助积分说明 816243