A new generative adversarial network for medical images super resolution

计算机科学 人工智能 深度学习 图像(数学) 卷积神经网络 图像分辨率 计算机视觉 特征(语言学) 网络体系结构 模式识别(心理学) 比例(比率) 路径(计算) 地图学 地理 哲学 语言学 计算机安全 程序设计语言
作者
Waqar Ahmad,Hazrat Ali,Zubair Shah,Shoaib Azmat
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:117
标识
DOI:10.1038/s41598-022-13658-4
摘要

Abstract For medical image analysis, there is always an immense need for rich details in an image. Typically, the diagnosis will be served best if the fine details in the image are retained and the image is available in high resolution. In medical imaging, acquiring high-resolution images is challenging and costly as it requires sophisticated and expensive instruments, trained human resources, and often causes operation delays. Deep learning based super resolution techniques can help us to extract rich details from a low-resolution image acquired using the existing devices. In this paper, we propose a new Generative Adversarial Network (GAN) based architecture for medical images, which maps low-resolution medical images to high-resolution images. The proposed architecture is divided into three steps. In the first step, we use a multi-path architecture to extract shallow features on multiple scales instead of single scale. In the second step, we use a ResNet34 architecture to extract deep features and upscale the features map by a factor of two. In the third step, we extract features of the upscaled version of the image using a residual connection-based mini-CNN and again upscale the feature map by a factor of two. The progressive upscaling overcomes the limitation for previous methods in generating true colors. Finally, we use a reconstruction convolutional layer to map back the upscaled features to a high-resolution image. Our addition of an extra loss term helps in overcoming large errors, thus, generating more realistic and smooth images. We evaluate the proposed architecture on four different medical image modalities: (1) the DRIVE and STARE datasets of retinal fundoscopy images, (2) the BraTS dataset of brain MRI, (3) the ISIC skin cancer dataset of dermoscopy images, and (4) the CAMUS dataset of cardiac ultrasound images. The proposed architecture achieves superior accuracy compared to other state-of-the-art super-resolution architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
3秒前
yar应助lifeng采纳,获得10
3秒前
鲤鱼平安发布了新的文献求助10
4秒前
4秒前
机灵柚子应助哭泣半双采纳,获得10
4秒前
香蕉觅云应助哭泣半双采纳,获得10
4秒前
大模型应助infe采纳,获得10
5秒前
小鸣完成签到 ,获得积分10
5秒前
6秒前
6秒前
huracan发布了新的文献求助10
7秒前
张天发布了新的文献求助10
8秒前
xy发布了新的文献求助10
8秒前
nkuwangkai完成签到,获得积分10
8秒前
8秒前
9秒前
HIMINNN发布了新的文献求助10
9秒前
望着夏草想念你完成签到,获得积分10
10秒前
10秒前
11秒前
天天快乐应助福1采纳,获得30
12秒前
12秒前
13秒前
欣喜鹏煊发布了新的文献求助10
14秒前
乐观安蕾完成签到,获得积分10
15秒前
阿湛发布了新的文献求助10
15秒前
HIMINNN完成签到,获得积分10
16秒前
huracan完成签到,获得积分10
17秒前
李爱国应助wzx采纳,获得10
17秒前
FashionBoy应助外向访卉采纳,获得10
18秒前
student关注了科研通微信公众号
18秒前
18秒前
19秒前
小蘑菇应助呆萌幼晴采纳,获得10
19秒前
脑洞疼应助十三艘船采纳,获得10
19秒前
吴未发布了新的文献求助10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097634
求助须知:如何正确求助?哪些是违规求助? 3635290
关于积分的说明 11523094
捐赠科研通 3345616
什么是DOI,文献DOI怎么找? 1838815
邀请新用户注册赠送积分活动 906265
科研通“疑难数据库(出版商)”最低求助积分说明 823527