A new generative adversarial network for medical images super resolution

计算机科学 人工智能 深度学习 图像(数学) 卷积神经网络 图像分辨率 计算机视觉 特征(语言学) 网络体系结构 模式识别(心理学) 比例(比率) 路径(计算) 地图学 地理 哲学 语言学 计算机安全 程序设计语言
作者
Waqar Ahmad,Hazrat Ali,Zubair Shah,Shoaib Azmat
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:102
标识
DOI:10.1038/s41598-022-13658-4
摘要

Abstract For medical image analysis, there is always an immense need for rich details in an image. Typically, the diagnosis will be served best if the fine details in the image are retained and the image is available in high resolution. In medical imaging, acquiring high-resolution images is challenging and costly as it requires sophisticated and expensive instruments, trained human resources, and often causes operation delays. Deep learning based super resolution techniques can help us to extract rich details from a low-resolution image acquired using the existing devices. In this paper, we propose a new Generative Adversarial Network (GAN) based architecture for medical images, which maps low-resolution medical images to high-resolution images. The proposed architecture is divided into three steps. In the first step, we use a multi-path architecture to extract shallow features on multiple scales instead of single scale. In the second step, we use a ResNet34 architecture to extract deep features and upscale the features map by a factor of two. In the third step, we extract features of the upscaled version of the image using a residual connection-based mini-CNN and again upscale the feature map by a factor of two. The progressive upscaling overcomes the limitation for previous methods in generating true colors. Finally, we use a reconstruction convolutional layer to map back the upscaled features to a high-resolution image. Our addition of an extra loss term helps in overcoming large errors, thus, generating more realistic and smooth images. We evaluate the proposed architecture on four different medical image modalities: (1) the DRIVE and STARE datasets of retinal fundoscopy images, (2) the BraTS dataset of brain MRI, (3) the ISIC skin cancer dataset of dermoscopy images, and (4) the CAMUS dataset of cardiac ultrasound images. The proposed architecture achieves superior accuracy compared to other state-of-the-art super-resolution architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianhong发布了新的文献求助10
刚刚
仲半邪完成签到,获得积分10
1秒前
狂野的河马完成签到,获得积分10
1秒前
Ting完成签到 ,获得积分10
2秒前
七七完成签到 ,获得积分10
2秒前
勤奋的松鼠完成签到,获得积分10
2秒前
可爱的函函应助drfwjuikesv采纳,获得10
3秒前
背后的鹭洋完成签到,获得积分10
3秒前
3秒前
4秒前
淡淡的发卡完成签到,获得积分10
4秒前
5秒前
暗黑同学完成签到,获得积分10
5秒前
杨譮完成签到,获得积分10
5秒前
fly完成签到,获得积分10
6秒前
云端发布了新的文献求助10
7秒前
7秒前
8秒前
斯文败类应助yanghua采纳,获得10
8秒前
喝口茶先别急完成签到,获得积分10
8秒前
8秒前
阿希塔发布了新的文献求助200
8秒前
哈哈哈完成签到,获得积分10
9秒前
冷静的胜完成签到,获得积分10
9秒前
迷路的蛋挞完成签到,获得积分20
9秒前
顾矜应助Yeong采纳,获得10
9秒前
Ava应助超级铅笔采纳,获得10
10秒前
ZZ发布了新的文献求助10
10秒前
西西里柠檬完成签到,获得积分10
10秒前
wzll完成签到,获得积分10
10秒前
qinkoko完成签到,获得积分10
11秒前
大模型应助皮皮采纳,获得10
12秒前
Gavin发布了新的文献求助10
12秒前
12秒前
阿瑶与呆呆完成签到,获得积分10
12秒前
伶俐的雁蓉完成签到,获得积分10
13秒前
坚定惜梦完成签到,获得积分10
13秒前
小二郎应助Riggle G采纳,获得10
13秒前
wzll发布了新的文献求助10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578