Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling

生物地球化学循环 土壤碳 环境科学 生态系统 生态学 草原 功能(生物学) 微生物生态学 土壤科学 土壤水分 生物 遗传学 进化生物学 细菌
作者
Gangsheng Wang,Qun Gao,Yunfeng Yang,Sarah E. Hobbie,Peter B. Reich,Jizhong Zhou
出处
期刊:Global Change Biology [Wiley]
卷期号:28 (5): 1935-1950 被引量:63
标识
DOI:10.1111/gcb.16036
摘要

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Stephen采纳,获得10
5秒前
Luminous1123完成签到,获得积分10
6秒前
13秒前
Luna爱科研完成签到 ,获得积分10
18秒前
wf完成签到,获得积分10
21秒前
隐形曼青应助哎呀采纳,获得10
25秒前
26秒前
34秒前
蓝莲花完成签到 ,获得积分10
38秒前
44秒前
科研通AI5应助美满寄松采纳,获得30
45秒前
48秒前
49秒前
双儿发布了新的文献求助10
51秒前
55秒前
59秒前
糖炒李子完成签到 ,获得积分10
1分钟前
hhhh6666发布了新的文献求助10
1分钟前
polite发布了新的文献求助10
1分钟前
1分钟前
美满寄松发布了新的文献求助30
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
知了完成签到 ,获得积分10
1分钟前
1分钟前
爱学习的医学小白完成签到 ,获得积分10
1分钟前
1分钟前
譬如人间烟火色完成签到 ,获得积分20
1分钟前
MchemG应助RIchard采纳,获得10
1分钟前
北海发布了新的文献求助20
1分钟前
书霂完成签到,获得积分10
1分钟前
Yan完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助小刘采纳,获得10
1分钟前
liyingyan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小二郎应助zlx采纳,获得30
1分钟前
郑思榆完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781947
求助须知:如何正确求助?哪些是违规求助? 3327479
关于积分的说明 10231578
捐赠科研通 3042395
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822