Parallel planning: a new motion planning framework for autonomous driving

计算机科学 人工智能 运动规划 规划师 生成模型 强化学习 卷积神经网络 机器学习 生成语法 机器人
作者
Long Chen,Xuemin Hu,Wei Tian,Hong Wang,Dongpu Cao,Fei‐Yue Wang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 236-246 被引量:117
标识
DOI:10.1109/jas.2018.7511186
摘要

Motion planning is one of the most significant technologies for autonomous driving. To make motion planning models able to learn from the environment and to deal with emergency situations, a new motion planning framework called as "parallel planning" is proposed in this paper. In order to generate sufficient and various training samples, artificial traffic scenes are firstly constructed based on the knowledge from the reality. A deep planning model which combines a convolutional neural network (CNN) with the Long Short-Term Memory module (LSTM) is developed to make planning decisions in an end-toend mode. This model can learn from both real and artificial traffic scenes and imitate the driving style of human drivers. Moreover, a parallel deep reinforcement learning approach is also presented to improve the robustness of planning model and reduce the error rate. To handle emergency situations, a hybrid generative model including a variational auto-encoder (VAE) and a generative adversarial network (GAN) is utilized to learn from virtual emergencies generated in artificial traffic scenes. While an autonomous vehicle is moving, the hybrid generative model generates multiple video clips in parallel, which correspond to different potential emergency scenarios. Simultaneously, the deep planning model makes planning decisions for both virtual and current real scenes. The final planning decision is determined by analysis of real observations. Leveraging the parallel planning approach, the planner is able to make rational decisions without heavy calculation burden when an emergency occurs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
hyominhsu完成签到,获得积分10
4秒前
李健的小迷弟应助Yuan采纳,获得10
4秒前
4秒前
4秒前
yyy完成签到 ,获得积分10
5秒前
meng完成签到,获得积分10
5秒前
ZEM完成签到,获得积分10
6秒前
杰_骜不驯完成签到,获得积分10
7秒前
维妮妮发布了新的文献求助10
8秒前
汉堡包应助乖乖君采纳,获得10
8秒前
9秒前
cjq发布了新的文献求助10
9秒前
乌苏完成签到 ,获得积分10
9秒前
Hello应助柒z采纳,获得10
10秒前
冷傲的忆秋完成签到,获得积分10
10秒前
潇洒慕卉发布了新的文献求助10
10秒前
10秒前
杨元兰完成签到,获得积分10
11秒前
仁爱嫣发布了新的文献求助10
12秒前
阿嘉完成签到,获得积分10
12秒前
酷酷的如天完成签到,获得积分10
12秒前
13秒前
Wangjing发布了新的文献求助10
13秒前
积极的新柔完成签到,获得积分10
15秒前
cjq完成签到,获得积分10
15秒前
17秒前
FCL发布了新的文献求助10
17秒前
17秒前
wdl完成签到,获得积分10
19秒前
淳于白凝完成签到,获得积分10
19秒前
丘比特应助IMALL采纳,获得10
21秒前
22秒前
25秒前
Zachary完成签到 ,获得积分10
25秒前
freedom完成签到,获得积分10
25秒前
努力毕业的瓜完成签到,获得积分10
27秒前
科研通AI2S应助Linsey采纳,获得10
27秒前
FCL发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793457
求助须知:如何正确求助?哪些是违规求助? 3338316
关于积分的说明 10289420
捐赠科研通 3054869
什么是DOI,文献DOI怎么找? 1676193
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761789