Deep residual network enabled smart hyperspectral image analysis and its application to monitoring moisture, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets

造粒 高光谱成像 颗粒(地质) 材料科学 含水量 残余物 色谱法 数学 化学 计算机科学 人工智能 复合材料 算法 地质学 岩土工程
作者
Yi Tao,Jiaqi Bao,Qing Liu,Li Liu,Jieqiang Zhu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:287: 122083-122083 被引量:9
标识
DOI:10.1016/j.saa.2022.122083
摘要

Bed collapse is a serious problem in a fluid-bed granulation process of traditional Chinese medicine. Moisture content and size distribution are regarded as two pivotal influencing factors. Herein, a smart hyperspectral image analysis methodology was established via deep residual network (ResNet) algorithm, which was then applied to monitoring moisture content, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets. First, a hyperspectral imaging camera was utilized to acquire hyperspectral images of 132 real granule samples in the spectral region of 389-1020 nm. Second, the moisture content and size distribution of the granules were measured with a laser particle sizer and a fast moisture analyzer, respectively. Moreover, the contents of danshensu, ferulic acid, rosmarinic acid and salvianolic acid B of the granules were determined by using high-performance liquid chromatography-diode array detection. Third, ResNet quantitative calibration models were built, which consisted of convolutional layer, maxpooling layer, four convolutional blocks with residual learning function and two fully connected layers. As a result, the Rc2 values for the moisture content, granule sizes and contents of four bioactive compounds are determined to be 0.957, 0.986, 0.936, 0.959, 0.937, 0.938, 0.956, 0.889, 0.914 and 0.928, whereas the Rp2 values are calculated as 0.940, 0.969, 0.904, 0.930, 0.925, 0.928, 0.896, 0.849, 0.844, and 0.905, respectively. The predicted values matched well with the measured values. These findings indicated that ResNet algorithm driven hyperspectral image analysis is feasible for monitoring both the physical and chemical properties of Guanxinning tablets at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴晨曦发布了新的文献求助10
刚刚
1秒前
科研通AI5应助这橘不甜采纳,获得10
1秒前
ll发布了新的文献求助10
1秒前
fengfenghao完成签到,获得积分10
1秒前
zincw完成签到,获得积分10
4秒前
4秒前
ligengxu发布了新的文献求助10
4秒前
dwalll发布了新的文献求助10
4秒前
吴晨曦完成签到,获得积分10
5秒前
geather发布了新的文献求助10
6秒前
7秒前
Owen应助Hello采纳,获得10
10秒前
33完成签到 ,获得积分10
15秒前
巫马夜安完成签到,获得积分10
16秒前
lyf完成签到 ,获得积分10
22秒前
geather完成签到,获得积分10
24秒前
nyg1234完成签到,获得积分10
26秒前
Priority完成签到,获得积分10
29秒前
温柔又莲完成签到,获得积分10
30秒前
32秒前
35秒前
叶95发布了新的文献求助10
37秒前
外向白开水完成签到 ,获得积分10
39秒前
mgg完成签到,获得积分10
39秒前
龙舞星完成签到,获得积分10
39秒前
韩hqf发布了新的文献求助10
40秒前
Akim应助清新的音响采纳,获得10
41秒前
小瞎子_Zora完成签到 ,获得积分10
45秒前
46秒前
晶晶完成签到 ,获得积分10
46秒前
JamesPei应助博修采纳,获得10
49秒前
科研通AI5应助zhang采纳,获得10
50秒前
shyの煜完成签到 ,获得积分10
51秒前
MAN发布了新的文献求助10
51秒前
科研通AI5应助dongli6536采纳,获得10
54秒前
Ava应助hjjj采纳,获得10
54秒前
脑洞疼应助奔腾小马采纳,获得10
54秒前
英俊的铭应助孤独士晋采纳,获得30
55秒前
mrwang完成签到 ,获得积分10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778025
求助须知:如何正确求助?哪些是违规求助? 3323679
关于积分的说明 10215432
捐赠科研通 3038897
什么是DOI,文献DOI怎么找? 1667705
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339