Alliance strategy in an online retailing supply chain: Motivation, choice, and equilibrium

联盟 供应链 业务 代理(哲学) 产业组织 竞赛(生物学) 水准点(测量) 营销 微观经济学 经济 哲学 地理 法学 认识论 生物 生态学 政治学 大地测量学
作者
Tong‐Yuan Wang,Zhen‐Song Chen,Peng He,Kannan Govindan,Mirosław J. Skibniewski
出处
期刊:Omega [Elsevier BV]
卷期号:115: 102791-102791 被引量:33
标识
DOI:10.1016/j.omega.2022.102791
摘要

• A co-opetitive online retailing supply chain is investigated. • The alliance motivation, choice and equilibrium are identified. • Win-win-win situations can be achieved if the manufacturer and the retailer/platform form an alliance. • Lose-lose-lose situations can be achieved if the retailer and the platform form an alliance. • A higher agency rate benefits the retailer when the manufacturer and the platform ally. In this paper, we investigate the alliance strategy in an Online Retailing Supply Chain (ORSC). Three alliance models in addition to one no alliance model are built and examined. The no alliance model as a benchmark is developed to characterize the alliance motivation for each supply chain member. Afterwards, we identify the optimal alliance strategy and the final alliance equilibrium. The results show that the manufacturer always has motivations to form an alliance with each of other two members, while the retailer and the platform may form an alliance only when the agency rate is relatively low. Moreover, under certain conditions, all supply chain members could achieve a win-win-win result in the manufacturer-retailer and manufacturer-platform alliance models, but fall into a lose-lose-lose situation in the retailer-platform alliance model. Additionally, it is interesting that a higher agency rate makes the retailer more profitable when the platform and manufacturer enter into an alliance. Finally, we find that each of the three alliance models may be the final equilibrium, which is largely dependent on channel competition and the agency rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助lin采纳,获得10
刚刚
1秒前
hatoyama发布了新的文献求助10
1秒前
qwer完成签到,获得积分10
1秒前
科研通AI2S应助访云采纳,获得10
1秒前
汝桢发布了新的文献求助10
2秒前
2秒前
z1z1z发布了新的文献求助10
2秒前
酷波er应助汤汤采纳,获得10
3秒前
4秒前
酒菜盒子发布了新的文献求助10
5秒前
科研通AI2S应助咳咳采纳,获得10
5秒前
CipherSage应助zhangjiabin采纳,获得10
6秒前
熠云发布了新的文献求助10
6秒前
Moke发布了新的文献求助10
6秒前
Wen关闭了Wen文献求助
7秒前
赘婿应助学勾巴采纳,获得10
7秒前
SUMING完成签到 ,获得积分10
8秒前
8秒前
9秒前
李爱国应助manstein采纳,获得20
9秒前
aaaaaa发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
加菲丰丰应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
加菲丰丰应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得30
10秒前
Hello应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
fxs完成签到 ,获得积分10
10秒前
加菲丰丰应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
wanci应助甘楽采纳,获得10
10秒前
浮游应助小陶采纳,获得10
12秒前
李健应助何YI采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5171369
求助须知:如何正确求助?哪些是违规求助? 4361812
关于积分的说明 13581435
捐赠科研通 4209417
什么是DOI,文献DOI怎么找? 2308751
邀请新用户注册赠送积分活动 1308047
关于科研通互助平台的介绍 1254938