An Information Fusion System-Driven Deep Neural Networks With Application to Cancer Mortality Risk Estimate

癌症 头颈部鳞状细胞癌 疾病 生物信息学 融合基因 计算机科学 计算生物学 基因 生物 医学 头颈部癌 内科学 遗传学
作者
Cheng‐Hong Yang,Sin‐Hua Moi,Li‐Yeh Chuang,Yu-Da Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2023.3342462
摘要

Next-generation sequencing (NGS) genomic data offer valuable high-throughput genomic information for computational applications in medicine. Using genomic data to identify disease-associated genes to estimate cancer mortality risk remains challenging regarding to computational efficiency and risk integration. For determining mortality-related genes, we propose an information fusion system based on a fuzzy system to fuse the numerous deep-learning-based risk scores, consider the significance of features related to time-varying effects and risk stratifications, and interpret the directional relationship and interaction between outcome and predictors. Fuzzy rules were implemented to integrate the considerations mentioned above by merging all the risk score models to achieve advanced risk estimation. The genomic data of head and neck squamous cell carcinoma (HNSCC) were used to evaluate the performance of the proposed computational approach. The results indicated that the proposed computational approach exhibited optimal ability to identify mortality risk-related genes in HNSCC patients. The results also suggest that HNSCC mortality is associated with cancer inflammatory response, the interleukin-17A signaling pathway, stellate cell activation, and the extracellular-regulated protein kinase five signaling pathway, which might offer new therapeutic targets HNSCC through immunologic or antiangiogenic mechanisms. The proposed information fusion system can promote the determination of high-risk genes related to cancer mortality. This study contributes a valid cancer mortality risk estimate that can identify mortality-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Cc完成签到 ,获得积分10
4秒前
科研通AI5应助飘逸的巧凡采纳,获得10
4秒前
xfy完成签到 ,获得积分10
4秒前
Junex完成签到 ,获得积分10
5秒前
wuda完成签到,获得积分10
5秒前
6秒前
豪杰发布了新的文献求助10
6秒前
丘比特应助舒适路人采纳,获得10
7秒前
7秒前
chen完成签到,获得积分10
10秒前
ryan完成签到,获得积分10
10秒前
Boren完成签到,获得积分10
10秒前
小酒窝完成签到,获得积分10
10秒前
beichuanheqi应助粤十一采纳,获得10
12秒前
ryan发布了新的文献求助10
12秒前
CIXI完成签到,获得积分10
15秒前
16秒前
18秒前
思源应助舒适路人采纳,获得20
19秒前
19秒前
我是老大应助exosome采纳,获得10
20秒前
21秒前
单于安完成签到,获得积分10
22秒前
鸽鸽~发布了新的文献求助10
23秒前
24秒前
Owen应助机智的阿振采纳,获得10
24秒前
25秒前
Hello应助HORSE047采纳,获得10
26秒前
26秒前
Mircale发布了新的文献求助10
26秒前
11哥应助务实的静珊采纳,获得50
27秒前
星辰大海应助in采纳,获得20
27秒前
27秒前
李李李发布了新的文献求助10
31秒前
31秒前
打打应助舒适路人采纳,获得10
31秒前
31秒前
星辰大海应助鸽鸽~采纳,获得10
31秒前
笨笨芯发布了新的文献求助30
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784187
求助须知:如何正确求助?哪些是违规求助? 3329320
关于积分的说明 10241363
捐赠科研通 3044768
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759288