亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring

食物腐败 计算机科学 肉类腐败 卷积神经网络 人工智能 食品科学 算法 化学 生物 遗传学 细菌
作者
Jie Wang,Linlin Xia,Han Liu,Chong Zhao,S. J. Ming,Jingyi Wu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148474-148474 被引量:33
标识
DOI:10.1016/j.cej.2023.148474
摘要

Currently, the developed testing methods determining meat freshness are time-consuming, inconvenient, or have high specialty requirements. Herein, we proposed a colorimetric microneedle sensor (CMS) using a deep learning algorithm for visualized meat freshness monitoring. The CMS was obtained by molding edible hydrogels containing pH-responsive anthocyanins, which change colors because of the structure change of anthocyanins in response to pH. When attached to meat, the CMS was capable of penetrating the meat and extracting tissue fluids by capillary action. With meat spoilage, the pH of the tissue fluid gradually rose, leading to a change in CMS from pink to purple and finally to dark blue. Thus, according to variations of CMS colors, in situ and visualized detection of meat freshness was achieved. Further, a deep learning algorithm was applied to integrate with CMS to form a smartphone application (App), allowing for more convenient and accurate freshness detection. Images of CMS attached to the meat with different freshness were collected to form a training source as the input of the convolutional neural network (CNN). Through convolving CMS color features, the meat freshness classified as "fresh", "less fresh", and "spoiled" was finally outputted. With the incorporation of CNN, the App enabled users to identify the freshness of meat from stored photos or real-time images of CMS-labeled meats in a fast, accurate, portable, and universal way. This visualized detection strategy of CMS combined with an algorithm-integrated App has a promising potential for wide applications such as food safety, health monitoring, and environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
kei完成签到 ,获得积分10
13秒前
科研通AI6应助Tania采纳,获得30
18秒前
浮游应助ruirui_love采纳,获得10
23秒前
29秒前
39秒前
斯文败类应助看一千次海采纳,获得10
46秒前
47秒前
量子星尘发布了新的文献求助10
54秒前
55秒前
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
he发布了新的文献求助10
1分钟前
FashionBoy应助he采纳,获得10
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
看一千次海完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Andy完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Tania发布了新的文献求助30
3分钟前
3分钟前
Fairy完成签到,获得积分10
3分钟前
ruirui_love发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470231
求助须知:如何正确求助?哪些是违规求助? 4573100
关于积分的说明 14338046
捐赠科研通 4500118
什么是DOI,文献DOI怎么找? 2465578
邀请新用户注册赠送积分活动 1453923
关于科研通互助平台的介绍 1428539