Integrating Prototype Learning With Graph Convolution Network for Effective Active Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 模式识别(心理学) 图形 上下文图像分类 卷积(计算机科学) 水准点(测量) 样品(材料) 机器学习 人工神经网络 图像(数学) 化学 大地测量学 理论计算机科学 色谱法 地理
作者
Chen Ding,Mengmeng Zheng,Sirui Zheng,Yaoyang Xu,Lei Zhang,Wei Wei,Yanning Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2024.3352112
摘要

In recent years, active learning (AL) methods have provided a feasible approach to alleviate the problem of limited labeled samples in deep learning projects. Existing AL algorithms generally tend to select sample without labeled, whose category is difficult to distinguish. However, the sample in the category center is difficult to determine in AL operations, resulting in inaccurate category measuring and inaccurate sample selection. In addition, hyperspectral images (HSIs) have rich spectral reflective bands with strong correlations, which leads to the phenomenon that the spatial distribution between different categories in HSIs characterizes staggered distribution, which undoubtedly influences the HSI classification effect. In this article, we propose a new AL method (called PLGCN) which combines prototype learning (PL) and graph convolution network (GCN) to solve few-shot HSI classification tasks, and this method can add into existing deep learning-based HSI classification models. It includes two advantages: 1) the prototype of each category is iteratively updated to ensure the optimality of prototype in each sampling stage and 2) the spatial distribution of unlabeled samples is extracted via graph convolution neural network in order to obtain the better features in new space for easier discriminating. Experimental results on three commonly used benchmark HSI datasets demonstrate the effectiveness of the PLGCN in HSI classification tasks with limited labeled samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘媛发布了新的文献求助10
2秒前
wanci应助zy采纳,获得10
2秒前
3秒前
flyabc完成签到,获得积分10
3秒前
传奇3应助HermanCheney采纳,获得10
4秒前
6秒前
mao应助ll采纳,获得10
6秒前
Hello应助qiulong采纳,获得10
9秒前
朵坎温苋发布了新的文献求助30
9秒前
12秒前
13秒前
寻风完成签到,获得积分10
16秒前
16秒前
冰魂应助郭宇采纳,获得10
17秒前
冰魂应助睡睡采纳,获得10
18秒前
18秒前
KinKrit发布了新的文献求助10
19秒前
茶荼发布了新的文献求助10
19秒前
丹丹发布了新的文献求助30
20秒前
积极问晴发布了新的文献求助10
20秒前
24秒前
25秒前
25秒前
烟花应助CYY采纳,获得10
25秒前
脑洞疼应助茶荼采纳,获得10
25秒前
JMchiefEditor发布了新的文献求助10
28秒前
顺其自然_666888完成签到,获得积分10
29秒前
睡睡完成签到,获得积分10
30秒前
30秒前
menxiaomei发布了新的文献求助10
31秒前
jiangchuansm完成签到,获得积分10
31秒前
嘤鸣完成签到,获得积分10
32秒前
33秒前
hmf1995完成签到 ,获得积分10
33秒前
35秒前
Serena发布了新的文献求助10
36秒前
JMchiefEditor完成签到,获得积分10
36秒前
刘媛完成签到,获得积分20
37秒前
苏苏苏发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976