Underwater Image Enhancement via Adaptive Color Correction and Stationary Wavelet Detail Enhancement

人工智能 计算机科学 计算机视觉 水下 RGB颜色模型 色彩平衡 小波 伽马校正 颜色校正 像素 频道(广播) 图像质量 彩色图像 图像处理 图像(数学) 海洋学 地质学 计算机网络
作者
Zhenbo Wang,Dujuan Zhou,Zhichuang Li,Zizhao Yuan,Chun Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 11066-11082 被引量:4
标识
DOI:10.1109/access.2024.3354169
摘要

High-quality images are of great significance for vision tasks in underwater environments. However, as light propagates through water, it is scattered and absorbed, which commonly causes issues like color distortion and loss of detail, making the capture of high-quality images challenging. To improve the quality of underwater images, we propose an underwater image enhancement method that is based on channel similarity to adaptive color correction and stationary wavelet detail enhancement. Specifically, We first innovatively introduce channel similarity values to avoid red artifacts during color correction, and finely adjust the compensation amount at the pixel level based on the intensity difference between the red and green channels. By designing a new dynamic normalization range based on channel similarity, our color correction method adaptively adjusts the dynamic range of each RGB channel’s pixel value. This accommodation for color deviations in various underwater scenes enhances the color saturation of images. Subsequently, using the stationary wavelet transform, we accurately decompose the image into low-frequency and high-frequency components. Through fine processing of the low-frequency components, we optimize detail performance and enhance the visual clarity of the underwater scene. Extensive experiments on four benchmark datasets validate that our method is state-of-the-art in underwater image enhancement, excelling in both qualitative and quantitative evaluations. Additionally, our method bolsters the precision of tasks such as keypoint matching and edge detection within the realm of image processing. The code is available at https://github.com/Zhenbo-Wang/Adaptive-Color-Correction-and-Stationary-Wavelet-Detail-Enhancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助醉酒笑红尘采纳,获得10
1秒前
坦率的怡完成签到,获得积分10
4秒前
5秒前
Sinoatrail完成签到,获得积分10
6秒前
搜集达人应助小谢采纳,获得10
6秒前
老王完成签到,获得积分10
6秒前
7秒前
未有期完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
小白白白完成签到 ,获得积分10
11秒前
隐形曼青应助cube半肥半瘦采纳,获得10
11秒前
11秒前
门牙发布了新的文献求助30
11秒前
12秒前
飘逸楷瑞发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
16秒前
今后应助泽栋采纳,获得10
16秒前
16秒前
无敌W发布了新的文献求助10
16秒前
17秒前
灯与鬼应助阿秋秋秋采纳,获得10
17秒前
小谢发布了新的文献求助10
18秒前
桐桐应助luminous采纳,获得10
18秒前
包容溪灵发布了新的文献求助10
18秒前
WYF发布了新的文献求助10
18秒前
demo完成签到 ,获得积分10
19秒前
Dicy发布了新的文献求助10
20秒前
20秒前
从容前行完成签到,获得积分10
20秒前
毅然来完成签到 ,获得积分10
20秒前
斐嘿嘿发布了新的文献求助10
25秒前
英姑应助科研通管家采纳,获得10
27秒前
YifanWang应助科研通管家采纳,获得50
27秒前
YifanWang应助科研通管家采纳,获得20
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414