Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data

杠杆(统计) 时间序列 功率(物理) 人工神经网络 气象学 光伏系统 太阳能 发电 计算机科学 环境科学 人工智能 机器学习 地理 工程类 量子力学 物理 电气工程
作者
Maneesha Perera,Julian de Hoog,Kasun Bandara,Damith Senanayake,Saman Halgamuge
出处
期刊:Applied Energy [Elsevier BV]
卷期号:361: 122971-122971 被引量:13
标识
DOI:10.1016/j.apenergy.2024.122971
摘要

Regional solar power forecasting, which involves predicting the total power generation from all rooftop photovoltaic (PV) systems in a region holds significant importance for various stakeholders in the energy sector to ensure a stable electricity supply. However, the vast amount of solar power generation and weather time series from geographically dispersed locations that need to be considered in the forecasting process makes accurate regional forecasting challenging. Therefore, previous studies have limited the focus to either forecasting a single time series (i.e., aggregated time series) which is the addition of all solar generation time series in a region, disregarding the location-specific weather effects or forecasting solar generation time series of each PV site (i.e., individual time series) independently using location-specific weather data, resulting in a large number of forecasting models. In this work, we propose two new deep-learning-based regional forecasting methods that can effectively leverage both types of time series (aggregated and individual) with weather data in a region. We propose two hierarchical temporal convolutional neural network architectures (HTCNN A1 and A2) and two new strategies to adapt HTCNNs for regional solar power forecasting. In the first strategy, we explore generating a regional forecast using a single HTCNN. In the second, we divide the region into multiple sub-regions based on weather information and train separate HTCNNs for each sub-region; the forecasts of each sub-region are then added to generate a regional forecast. The proposed work is evaluated using a large dataset collected over a year from 101 locations across Western Australia to provide a day ahead forecast at an hourly time resolution which involves forecasting a horizon of 18 h. We compare our approaches with well-known alternative methods, including long short-term memory networks and convolution neural networks, and show that proposed HTCNN-based approaches require fewer individually trained networks. Furthermore, the sub-region-based HTCNN-based approach achieves a forecast skill score of 40.2% and reduces a statistically significant forecast error by 6.5% compared to the best-performing counterpart. Our results indicate that the proposed approaches are well-suited for forecasting applications covering large regions containing many individual solar PV systems in different locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
...完成签到,获得积分10
刚刚
kk发布了新的文献求助10
1秒前
秀丽笑容完成签到 ,获得积分20
1秒前
2秒前
眼睛大又蓝完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
sue401发布了新的文献求助10
7秒前
共享精神应助谨慎的擎宇采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
温暖寻云发布了新的文献求助10
13秒前
陈醋塔塔完成签到,获得积分10
14秒前
15秒前
zgnb完成签到,获得积分10
16秒前
17秒前
友好冥王星完成签到 ,获得积分10
17秒前
17秒前
迅速的秋珊完成签到,获得积分10
18秒前
zgnb发布了新的文献求助10
20秒前
张涛完成签到,获得积分20
20秒前
贾哲宇发布了新的文献求助30
22秒前
冰的幻想完成签到,获得积分10
24秒前
风云完成签到,获得积分10
26秒前
28秒前
彭于晏应助zgnb采纳,获得10
28秒前
Hou完成签到 ,获得积分10
28秒前
成就的连虎完成签到,获得积分10
29秒前
OnMyWorldside完成签到,获得积分10
34秒前
科研通AI5应助sherry采纳,获得10
35秒前
35秒前
36秒前
科研通AI5应助轶Y采纳,获得30
36秒前
王大炮完成签到 ,获得积分10
37秒前
Hello应助冰的幻想采纳,获得10
37秒前
weilei完成签到,获得积分10
38秒前
hui发布了新的文献求助10
38秒前
Jasper应助冷傲小猫咪采纳,获得10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757