发光二极管
材料科学
二极管
量子点
光电子学
降级(电信)
基础(拓扑)
蓝光
路易斯酸
纳米技术
化学
电信
催化作用
计算机科学
数学分析
数学
生物化学
作者
Yuyu Liu,Minming Yan,Jia Shu,Hongwei He,Zi Wang,Ziyu Qin,Yunwei Wang,Yong Zhang
标识
DOI:10.1021/acsami.3c17141
摘要
The distinctive characteristics of blue quantum dots (QDs) such as their deep valence band and large bandgap give rise to an elevated hole injection barrier between the hole transport layers (HTLs) and the QD active layer. This results in an imbalance of carrier transport and injection across the device, leading to a degrading performance in QD light-emitting diodes (QLEDs). In this paper, high-efficiency and low-efficiency degradation blue CdSe/CdS/ZnS QLEDs were fabricated by using the Lewis base, 1,2-bis(diphenylphosphino)ethane (DPPE), blended with poly(9-vinylcarbazole) (PVK) (DPPE:PVK) as HTLs. The device performance of blue QLEDs can be finely adjusted by manipulating the blending ratio between DPPE and PVK. When 4 wt % DPPE was blended with PVK (4 wt % DPPE:PVK) as the HTL, the device achieved its optimal performance. Compared to the device with neat PVK as the HTL, the turn-on voltage of blue QLEDs with the 4 wt % DPPE:PVK HTL is reduced from 3.21 to 2.9 V. The maximum current efficiency (CE) and external quantum efficiency (EQE) of blue QLEDs increase from 2.92 cd A-1 and 5.89% in neat PVK to 5.75 cd A-1 and 11.75% for the 4 wt % DPPE:PVK HTL. Furthermore, the QLEDs incorporating DPPE:PVK HTLs exhibited exceptional resistance to efficiency degradation (EQE = 8.83%@L = 12,000 cd m-2 for 4 wt % DPPE:PVK as the HTL and EQE = 2.80%@L = 12,000 cd m-2 for neat PVK as the HTL). A more in-depth analysis reveals that enhanced device performance results from the chelating and bridging effect of the bidentate ligand Lewis base DPPE. These effects strengthen the binding of free metal ions in the blue QDs, reduce the charge barriers, enhance the contact between the HTLs and the QD active layer, and ultimately improve hole injection.
科研通智能强力驱动
Strongly Powered by AbleSci AI