Research on identification method of tangerine peel year based on deep learning

人工智能 模式识别(心理学) 化学 计算机科学 数学
作者
Ziyi Chu,Fengmei Li,Dongwei WANG,Shusheng Xu,Chunfeng GAO,Haoran Bai
出处
期刊:Food Science and Technology [Sociedade Brasileira de Ciência e Tecnologia de Alimentos]
卷期号:42 被引量:7
标识
DOI:10.1590/fst.64722
摘要

Tangerine Peel has rich medicinal value, known as ' one kilogram of tangerine peel, one kilogram of gold '. However, the value of tangerine peels in different years is different, and there is no significant difference in the appearance of tangerine peels in different years. Identifying their authenticity has brought trouble to the industry. Generally speaking, the characteristics of tangerine peel can be identified through the texture, color and oil parcel points on the surface of tangerine peel. However, compared with the feature recognition of other Chinese medicinal materials, there is no significant difference in the shape of tangerine peel in different years, and the color is similar. Therefore, the feature extraction of tangerine peel is more complicated and the recognition is more difficult. The existing deep learning algorithms face great challenges in efficient and high accuracy recognition. In response to this challenge, this paper builds a new lightweight tangerine peel recognition algorithm TPRA (Tangerine Peel Recognition Algorithm) based on ResNet50. This algorithm uses a variety of methods to optimize the generalization ability of the model and improve the recognition accuracy. Firstly, TPRA adopts mixed data enhancement, including traditional data enhancement, deep convolution generation confrontation network DCGAN, and Mosaic data enhancement to enhance the richness of sample images in the dataset, reduced the data of each batch regularization (Batch Normal), and enhanced the performance of algorithm identification. Secondly, TPRA introduced the attention mechanism module CBAM (Convolutional Block Attention Module) combined with the cross stage partial network CSPNet (Cross Stage Partial Network) to propose an improved ResNet50 model, which adjusts the position of the maximum pooling layer and disassembles the large convolution kernel to effectively avoid overfitting. The experimental results showed that the accuracy of the algorithm can reach 98.8%, and the effect was better than that of Alexnet, VGG16 and Resnet50. TPRA provided a new method for the identification of peel years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吹球球8发布了新的文献求助10
2秒前
充电宝应助迷路中的骑手采纳,获得10
3秒前
Money发布了新的文献求助30
3秒前
1111应助hb采纳,获得50
3秒前
彭于晏应助爱听歌的青筠采纳,获得10
4秒前
TISAB发布了新的文献求助10
4秒前
yeerenn完成签到 ,获得积分10
6秒前
Maigret完成签到,获得积分10
6秒前
leier完成签到,获得积分10
7秒前
Ancestor发布了新的文献求助10
7秒前
张啊啊啊啊a完成签到,获得积分10
11秒前
12秒前
16秒前
完美世界应助南浅采纳,获得10
20秒前
flying发布了新的文献求助10
20秒前
zxx完成签到 ,获得积分10
21秒前
21秒前
爱听歌的青筠完成签到,获得积分10
22秒前
23秒前
科研通AI2S应助重要的冰绿采纳,获得10
24秒前
kytmm2022完成签到,获得积分10
25秒前
27秒前
28秒前
所所应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
冰魂应助科研通管家采纳,获得10
28秒前
冰魂应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得30
28秒前
我是老大应助科研通管家采纳,获得20
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
我爱科研应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得80
29秒前
pluto应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366