重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

SNIPPET: A Framework for Subjective Evaluation of Visual Explanations Applied to DeepFake Detection

代码段 计算机科学 数据科学 人工智能 情报检索 机器学习
作者
Yuqing Yang,Boris Joukovsky,José Oramas,Tinne Tuytelaars,Nikos Deligiannis
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3665248
摘要

Explainable Artificial Intelligence (XAI) attempts to help humans understand machine learning decisions better and has been identified as a critical component towards increasing the trustworthiness of complex black-box systems, such as deep neural networks (DNNs). In this paper, we propose a generic and comprehensive framework named SNIPPET and create a user interface for the subjective evaluation of visual explanations, focusing on finding human-friendly explanations. SNIPPET considers human-centered evaluation tasks and incorporates the collection of human annotations. These annotations can serve as valuable feedback to validate the qualitative results obtained from the subjective assessment tasks. Moreover, we consider different user background categories during the evaluation process to ensure diverse perspectives and comprehensive evaluation. We demonstrate SNIPPET on a DeepFake face dataset. Distinguishing real from fake faces is a non-trivial task even for humans, that depends on rather subtle features, making it a challenging use case. Using SNIPPET, we evaluate four popular XAI methods which provide visual explanations: Gradient-weighted Class Activation Mapping (GradCAM), Layer-wise Relevance Propagation (LRP), attention rollout (rollout), and Transformer Attribution (TA). Based on our experimental results, we observe preference variations among different user categories. We find that most people are more favorable to the explanations of rollout. Moreover, when it comes to XAI-assisted understanding, those who have no or lack relevant background knowledge often consider that visual explanations are insufficient to help them understand. We open-source our framework for continued data collection and annotation at https://github.com/XAI-SubjEvaluation/SNIPPET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lJH完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
赘婿应助善良的采蓝采纳,获得10
2秒前
萧萧发布了新的文献求助10
2秒前
2秒前
4秒前
6秒前
科目三应助小紫采纳,获得10
6秒前
7秒前
heihei发布了新的文献求助10
7秒前
我是老大应助jingle采纳,获得10
8秒前
桐桐应助超文献采纳,获得10
8秒前
Zzz发布了新的文献求助10
9秒前
9秒前
9秒前
JamesPei应助喜多采纳,获得10
10秒前
Archer完成签到,获得积分10
11秒前
11秒前
水濑心源完成签到,获得积分10
11秒前
11秒前
李健的小迷弟应助方华采纳,获得10
12秒前
12秒前
今后应助健壮涵柳采纳,获得10
12秒前
论高等数学的无用性完成签到 ,获得积分10
12秒前
昊昊发布了新的文献求助10
13秒前
14秒前
韶安萱发布了新的文献求助10
14秒前
14秒前
方可发布了新的文献求助10
15秒前
15秒前
阿C完成签到,获得积分10
16秒前
数学真的好难完成签到,获得积分10
18秒前
超文献发布了新的文献求助10
19秒前
wydkyd发布了新的文献求助10
19秒前
吱哦周发布了新的文献求助10
19秒前
忧郁的伞发布了新的文献求助10
20秒前
20秒前
李火火火发布了新的文献求助10
21秒前
无极微光应助anan采纳,获得20
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777