亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature extraction network of water scenes based on improved SuperPoint

特征提取 计算机科学 人工智能 特征(语言学) 萃取(化学) 模式识别(心理学) 语言学 色谱法 哲学 化学
作者
Yiran Gao,Mingyang Pan,Jingfeng Hu,Jiangling Hao,Zongying Liu
标识
DOI:10.1117/12.3029699
摘要

Since water scenes are highly susceptible to environmental factors, in the actual process of collecting and storing pictures, it is easy to cause noise pollution of image samples. This requires that the feature extraction algorithm can reduce the impact of noise on the sample data when dealing with data containing noise, i.e.That is to say, the algorithm model is required to have high robustness. The high-speed corner detection algorithm FAST, scale-invariant feature transform SIFT, etc. are traditional feature point detection methods, but the advantages in terms of computational speed and robustness are mixed. In this paper, we focus on the SuperPoint network, which has better robustness, and modify the network accodrding to the requirements of real-time and accuracy. To address the problems of gradient vanishing and gradient explosion, a residual connection structure is added between each convolutional layer and activation function. Meanwhile, to ensure the convergence speed of the model, a normalisation layer is added between the convolutional layers and the activation function. Finally, in order to improve the representation and generalisation ability of the model, the SE-Net channel attention mechanism module is added after the residual connection structure. Some of the Seaship ships, navigation beacons and other datasets are transformed into feature point datasets in the training dataset and strengthen its feature extraction capability for water scenes.Experimental analysis is conducted based on the water scenario, and the experimental results show that the detection and matching effects of feature points are improved under the guarantee of a slight increase in the computational speed, the detection effect of the number of feature points is improved by about 15.4%, the matching effect of feature points is improved by about 9.7%, the nearest-neighbour accuracy of the NN mAp is improved by about 9%, the repeatability of the Rep. is improved by about 11.4%, and the average positioning error is reduced by about 2.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷白萱发布了新的文献求助10
6秒前
慕青应助酷酷白萱采纳,获得10
19秒前
Wei发布了新的文献求助10
28秒前
酷酷白萱完成签到,获得积分10
29秒前
helpmepaper完成签到,获得积分0
53秒前
李海平完成签到 ,获得积分10
1分钟前
1分钟前
LICC发布了新的文献求助10
1分钟前
1分钟前
rpe发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
大个应助LICC采纳,获得10
1分钟前
非洲大象发布了新的文献求助50
1分钟前
THEO完成签到,获得积分10
1分钟前
zcm1999完成签到,获得积分10
2分钟前
kk99123完成签到,获得积分10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
金钰贝儿完成签到,获得积分10
2分钟前
大个应助rpe采纳,获得10
2分钟前
aiyawy完成签到 ,获得积分10
2分钟前
maggiexjl完成签到,获得积分10
2分钟前
3分钟前
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
乐易哩发布了新的文献求助10
3分钟前
乐易哩完成签到,获得积分20
3分钟前
滴滴滴完成签到 ,获得积分10
3分钟前
4分钟前
白云发布了新的文献求助10
4分钟前
4分钟前
rpe发布了新的文献求助10
4分钟前
大模型应助rpe采纳,获得10
5分钟前
5分钟前
5分钟前
念神珠恋玥完成签到,获得积分10
5分钟前
poki完成签到 ,获得积分10
5分钟前
kmzzy完成签到,获得积分10
6分钟前
瓜皮糖浆完成签到,获得积分10
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086195
求助须知:如何正确求助?哪些是违规求助? 3625210
关于积分的说明 11497226
捐赠科研通 3338927
什么是DOI,文献DOI怎么找? 1835565
邀请新用户注册赠送积分活动 903914
科研通“疑难数据库(出版商)”最低求助积分说明 822005