Forecasting petroleum products consumption in Cameroon's household sector using a sequential GMC(1,n) model optimized by genetic algorithms

消费(社会学) 石油 能源消耗 一致性(知识库) 遗传算法 耗油量 计算机科学 经济 计量经济学 运筹学 环境经济学 工程类 机器学习 人工智能 电气工程 社会学 古生物学 汽车工程 生物 社会科学
作者
Flavian Emmanuel Sapnken,Khazali Acyl Ahmat,Michel Boukar,Serge Luc Biobiongono Nyobe,Jean Gaston Tamba
出处
期刊:Heliyon [Elsevier BV]
卷期号:8 (12): e12138-e12138 被引量:12
标识
DOI:10.1016/j.heliyon.2022.e12138
摘要

Forecasting energy consumption is a major concern for policymakers, oil industry companies, and many other associated businesses. Though there exist many forecasting methodologies, selecting the most appropriate one is critical. GM(1,1) has proven to be one of the most successful forecasting tool. GM(1,1) does not require any specific information and can be adapted to predict energy consumption using a minimum of four observations. Unfortunately, GM(1,1) on its own will generate too large forecast errors because it performs well only when data follow an exponential trend and should be implemented in a political-socio-economic free environment. To reduce these errors, this study proposes a new GM(1,n) convolution model optimized by genetic algorithms integrating a sequential selection mechanism and arc consistency, abbreviated Sequential-GMC(1,n)-GA. Practically, the proposed approach, on one hand, highlights the forecast for petroleum products consumption in Cameroon's household sector. On the other hand, it estimates the amount of CO2 that would be reduced if petroleum products in this sector were switched to clean energy. The new model, like some recent hybrid versions, is robust and reliable, according to the results. Households petroleum products needs by 2025 are estimated to be 150,318 kilo tons of oil equivalent with MAPE of 1.44%, and RMSE of 0.833. Therefore, households GHG emissions would be reduced by 733.85 kilo tons of CO2 equivalent if clean energy was used instead of petroleum products. As a result, the new hybrid model is a valid forecasting tool that can be used to track the growth of Cameroon's household energy demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助糖果采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
zwlcl发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
星辰大海应助幸福大白采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
顾矜应助幸福大白采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
李爱国应助幸福大白采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
丘比特应助幸福大白采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Hello应助幸福大白采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
Akim应助幸福大白采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
酷波er应助聪明大米采纳,获得10
3秒前
4秒前
4秒前
咵嚓发布了新的文献求助10
4秒前
4秒前
慕青应助东京芝士123采纳,获得10
6秒前
wbh666完成签到,获得积分20
7秒前
无辜的蓝血完成签到,获得积分10
7秒前
纯真雁菱发布了新的文献求助10
8秒前
踏实的白羊完成签到,获得积分10
8秒前
所所应助Paracosm采纳,获得10
8秒前
CipherSage应助愿景采纳,获得10
8秒前
车卓航发布了新的文献求助10
9秒前
科研通AI6应助后知后觉采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Theoretical Justification and Institutional Construction of Pre-training Data Disclosure Obligations for AI Large Models 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4405483
求助须知:如何正确求助?哪些是违规求助? 3891058
关于积分的说明 12109259
捐赠科研通 3536039
什么是DOI,文献DOI怎么找? 1940194
邀请新用户注册赠送积分活动 981091
科研通“疑难数据库(出版商)”最低求助积分说明 877675