PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation

分类器(UML) 判别式 域适应 计算机科学 范畴变量 人工智能 源代码 机器学习 学习迁移 模式识别(心理学) 数据挖掘 操作系统
作者
Zhengfa Liu,Guang Chen,Zhijun Li,Yu Kang,Sanqing Qu,Changjun Jiang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 7353-7366 被引量:4
标识
DOI:10.1109/tcyb.2022.3228301
摘要

Open-set domain adaptation (OSDA) aims to achieve knowledge transfer in the presence of both domain shift and label shift, which assumes that there exist additional unknown target classes not presented in the source domain. To solve the OSDA problem, most existing methods introduce an additional unknown class to the source classifier and represent the unknown target instances as a whole. However, it is unreasonable to treat all unknown target instances as a group since these unknown instances typically consist of distinct categories and distributions. It is challenging to identify all unknown instances with only one additional class. In addition, most existing methods directly introduce marginal distribution alignment to alleviate distribution shift between the source and target domains, failing to learn discriminative class boundaries in the target domain since they ignore categorical discriminative information in the adaptation. To address these problems, in this article, we propose a novel prototype-based shared-dummy classifier (PSDC) model for the OSDA. Specifically, our PSDC introduces an auxiliary dummy classifier to calibrate the source classifier and simultaneously develops a weighted adaptation procedure to align class-wise prototypes for adaptation. We further design a pseudo-unknown learning algorithm to reduce the open-set risk. Extensive experiments on Office-31, Office-Home, and VisDA datasets show that the proposed PSDC can outperform existing methods and achieve the new state-of-the-art performance. The code will be made public.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arjun发布了新的文献求助10
1秒前
冬瓜完成签到,获得积分10
1秒前
ekdjk完成签到,获得积分10
2秒前
林琳发布了新的文献求助10
3秒前
HEHNJJ完成签到,获得积分10
3秒前
追尾的猫发布了新的文献求助10
3秒前
xpy发布了新的文献求助10
3秒前
4秒前
4秒前
起风了完成签到,获得积分10
4秒前
619805092完成签到,获得积分10
5秒前
所所应助坦率白竹采纳,获得10
5秒前
6秒前
7秒前
耶耶完成签到,获得积分10
7秒前
7秒前
起风了发布了新的文献求助10
7秒前
7秒前
黄jw完成签到 ,获得积分10
7秒前
8秒前
8秒前
顾矜应助huanir99采纳,获得10
8秒前
冷静战斗机完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
王不凡发布了新的文献求助10
10秒前
10秒前
Lw2222发布了新的文献求助10
10秒前
healer完成签到,获得积分10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
迷路飞绿完成签到,获得积分10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560