Stochastic Consensus: Enhancing Semi-Supervised Learning with Consistency of Stochastic Classifiers

计算机科学 判别式 过度拟合 人工智能 机器学习 聚类分析 正规化(语言学) 一致性(知识库) 模式识别(心理学) 数据挖掘 人工神经网络
作者
Hui Tang,Lin Sun,Kui Jia
出处
期刊:Lecture Notes in Computer Science 卷期号:: 330-346
标识
DOI:10.1007/978-3-031-19821-2_19
摘要

AbstractSemi-supervised learning (SSL) has achieved new progress recently with the emerging framework of self-training deep networks, where the criteria for selection of unlabeled samples with pseudo labels play a key role in the empirical success. In this work, we propose such a new criterion based on consistency among multiple, stochastic classifiers, termed Stochastic Consensus (STOCO). Specifically, we model parameters of the classifiers as a Gaussian distribution whose mean and standard deviation are jointly optimized during training. Due to the scarcity of labels in SSL, modeling classifiers as a distribution itself provides additional regularization that mitigates overfitting to the labeled samples. We technically generate pseudo labels using a simple but flexible framework of deep discriminative clustering, which benefits from the overall structure of data distribution. We also provide theoretical analysis of our criterion by connecting with the theory of learning from noisy data. Our proposed criterion can be readily applied to self-training based SSL frameworks. By choosing the representative FixMatch as the baseline, our method with multiple stochastic classifiers achieves the state of the art on popular SSL benchmarks, especially in label-scarce cases.KeywordsSemi-supervised learningStochastic classifiersConsistency criterionDeep discriminative clustering
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenoalter发布了新的文献求助30
刚刚
1秒前
徐佳乐发布了新的文献求助10
1秒前
挡住所有坏运气888完成签到,获得积分10
1秒前
JamesPei应助朴实问筠采纳,获得10
1秒前
短歌终完成签到,获得积分10
1秒前
Yana1311发布了新的文献求助10
2秒前
2秒前
隔壁老王完成签到,获得积分10
2秒前
爆米花应助莱茵采纳,获得10
2秒前
Crazyer完成签到,获得积分10
2秒前
moon完成签到,获得积分10
2秒前
CC发布了新的文献求助10
2秒前
我是老大应助nnnaaaa采纳,获得10
2秒前
3秒前
sybs发布了新的文献求助10
3秒前
Ck完成签到,获得积分10
4秒前
zzm完成签到,获得积分10
4秒前
5秒前
钮小妞完成签到,获得积分10
5秒前
完美世界应助WANG采纳,获得10
6秒前
今后应助星河采纳,获得10
6秒前
6秒前
莱芙完成签到 ,获得积分10
7秒前
王雯完成签到,获得积分10
7秒前
7秒前
free完成签到,获得积分10
7秒前
云淡风轻完成签到,获得积分10
7秒前
红毛兔完成签到 ,获得积分10
8秒前
从容映易完成签到,获得积分10
8秒前
徐佳乐完成签到,获得积分10
8秒前
lalala发布了新的文献求助30
8秒前
胡渣有点茂盛完成签到,获得积分20
9秒前
红叶发布了新的文献求助10
9秒前
领导范儿应助Drew采纳,获得30
10秒前
baijiahui完成签到,获得积分10
10秒前
上官若男应助柒月小鱼采纳,获得10
10秒前
10秒前
新颜发布了新的文献求助20
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463