Unveiling the damage evolution of SAC305 during fatigue by entropy generation

材料科学 焊接 消散 共晶体系 复合材料 应变率 微观结构 热力学 物理
作者
Xu Long,Ying Guo,Yuezeng Su,Kim Shyong Siow,Chuantong Chen
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:244: 108087-108087 被引量:12
标识
DOI:10.1016/j.ijmecsci.2022.108087
摘要

Low-cycle thermal-mechanical fatigue loadings induce progressive and permanent degradation of mechanical properties of lead-free solder materials, and thus reduce the fatigue life of electronic devices. In this study, damage evolution and accumulation of Sn-3.0Ag-0.5Cu (SAC305), the most successfully commercialized lead-free solder material, was investigated by performing strain-controlled fatigue tests at different temperatures (288–373 K) and strain rates (0.001–0.004 s−1). Unlike existing empirical models, a fatigue damage model was proposed based on entropy generation related to the thermodynamic nature of fatigue damage. To be intrinsic to entropy generation, the proposed model was calibrated with the peak stress degradation at different temperatures and strain rates. Our findings showed that the damage parameter is closely related to temperature and strain rate and monotonically increases from 0 to 1 during the low-cycle fatigue loading, which unveiled the fact regarding the irreversibility of the internal entropy generation. For the first time, the damage evolution is found to be more associated with the applied strain rate than the temperature. By observations using an optical microscopy, the physical damage mechanism is elucidated for SAC305 solder by correlating microstructures and damage evolutions. The evolving dendritic β-Sn phase and the surrounding Sn-Ag-Cu ternary eutectic network also explained the effects of temperature and strain rate based on the energy dissipation. Our proposed damage model reconciled the damage accumulation of SAC305 solder subjected to the low-cycle fatigue loading, which is readily adopted to predict the fatigue life of the electronic packaging structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
敢敢97完成签到 ,获得积分10
15秒前
烟花应助汤飞柏采纳,获得10
16秒前
17秒前
20秒前
orixero应助kaifeiQi采纳,获得10
20秒前
21秒前
22秒前
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
benben应助科研通管家采纳,获得10
23秒前
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
24秒前
24秒前
24秒前
许笑柳发布了新的文献求助10
25秒前
传奇3应助拉文克劳麻瓜橙采纳,获得10
27秒前
乐乐应助怦然心动采纳,获得10
28秒前
汤飞柏发布了新的文献求助10
28秒前
pandon2002发布了新的文献求助10
29秒前
wangxc发布了新的文献求助10
31秒前
34秒前
稳重的若雁完成签到,获得积分10
38秒前
羽鸮完成签到,获得积分20
39秒前
40秒前
CodeCraft应助小巧凌晴采纳,获得10
43秒前
大模型应助许笑柳采纳,获得10
43秒前
sandy发布了新的文献求助10
44秒前
44秒前
50秒前
Ethan发布了新的文献求助10
50秒前
52秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2449026
求助须知:如何正确求助?哪些是违规求助? 2123573
关于积分的说明 5402489
捐赠科研通 1852309
什么是DOI,文献DOI怎么找? 921136
版权声明 562197
科研通“疑难数据库(出版商)”最低求助积分说明 492798