This study investigates the long-term service effects on Chinese fir (Cunninghamia lanceolata) components from ancient timber buildings in southern China. Anisotropic mechanical tests were performed to examine the evolution of mechanical properties from the perspectives of moisture absorption behavior, chemical composition, and microstructural characteristics. The results show that, after approximately 217 ± 12 years (Lvb specimens) and 481 ± 23 years (Xuc specimens) of service, the longitudinal compressive strength and corresponding elastic modulus of Chinese fir increased by about 11% and 15% and 33% and 71%, respectively, compared with fresh timber. The bending strength of the Lvb sample exhibited a slight reduction (approximately 6%), whereas the Xuc specimens showed the highest increase (33%). This difference is mainly attributed to long-term bending loads that caused structural damage in the Lvb beam specimens. In contrast, changes in lateral mechanical properties were negligible. Chemical composition analysis revealed an increase in extractive content and a reduction in cellulose and hemicellulose, leading to a notable rise in crystallinity. Scanning electron microscopy (SEM) observations further showed interlayer separation, wrinkling, and local collapse of the cell walls, suggesting significant cell wall densification. Overall, the evolution of mechanical properties is governed by the combined effects of increased crystallinity and microstructural densification, which together enhance the longitudinal and bending performance of aged timber with increasing service time. The findings provide a scientific basis for evaluating the performance and structural safety of aged timber components in the conservation of ancient timber buildings.