Fuzzy Attention Neural Network to Tackle Discontinuity in Airway Segmentation

分割 计算机科学 稳健性(进化) 人工智能 模糊逻辑 模式识别(心理学) 人工神经网络 特征(语言学) 语言学 生物化学 基因 哲学 化学
作者
Nan Yang,Javier Del Ser,Zeyu Tang,Peng Tang,Xiaodan Xing,Yingying Fang,Francisco Herrera,Witold Pedrycz,Simon Walsh,Guang Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7391-7404 被引量:20
标识
DOI:10.1109/tnnls.2023.3269223
摘要

Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed methods to automatically segment airways from computerized tomography (CT) images. However, some small-sized airway branches (e.g., bronchus and terminal bronchioles) significantly aggravate the difficulty of automatic segmentation by machine learning models. In particular, the variance of voxel values and the severe data imbalance in airway branches make the computational module prone to discontinuous and false-negative predictions, especially for cohorts with different lung diseases. The attention mechanism has shown the capacity to segment complex structures, while fuzzy logic can reduce the uncertainty in feature representations. Therefore, the integration of deep attention networks and fuzzy theory, given by the fuzzy attention layer, should be an escalated solution for better generalization and robustness. This article presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network (FANN) and a comprehensive loss function to enhance the spatial continuity of airway segmentation. The deep fuzzy set is formulated by a set of voxels in the feature map and a learnable Gaussian membership function. Different from the existing attention mechanism, the proposed channel-specific fuzzy attention addresses the issue of heterogeneous features in different channels. Furthermore, a novel evaluation metric is proposed to assess both the continuity and completeness of airway structures. The efficiency, generalization, and robustness of the proposed method have been proved by training on normal lung disease while testing on datasets of lung cancer, COVID-19, and pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助刘某采纳,获得10
3秒前
平淡的翠霜关注了科研通微信公众号
3秒前
fiwer完成签到 ,获得积分10
4秒前
勤恳曼寒完成签到,获得积分10
4秒前
张文懿发布了新的文献求助10
5秒前
keimer完成签到,获得积分10
5秒前
iNk应助ningwu采纳,获得20
6秒前
fiwer关注了科研通微信公众号
7秒前
7秒前
会武功的阿吉完成签到,获得积分10
7秒前
eurus发布了新的文献求助10
7秒前
Akim应助了了采纳,获得10
8秒前
8秒前
Star完成签到 ,获得积分10
8秒前
CodeCraft应助hob采纳,获得10
8秒前
细心的代天完成签到 ,获得积分10
8秒前
10秒前
13秒前
刘某发布了新的文献求助10
15秒前
大胆的莛发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
川农辅导员完成签到,获得积分10
16秒前
一一应助eurus采纳,获得10
17秒前
了了完成签到,获得积分10
18秒前
zzz完成签到,获得积分10
18秒前
18秒前
了了发布了新的文献求助10
20秒前
和风关注了科研通微信公众号
20秒前
小小完成签到,获得积分20
21秒前
小小发布了新的文献求助10
22秒前
珂伟完成签到,获得积分10
22秒前
23秒前
现实的从丹完成签到,获得积分10
24秒前
勤奋飞双完成签到 ,获得积分10
24秒前
思源应助姚波采纳,获得10
24秒前
hob发布了新的文献求助10
27秒前
内向的小凡完成签到,获得积分0
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852