金红石
高分辨率透射电子显微镜
材料科学
锐钛矿
透射电子显微镜
纳米技术
二氧化钛
相图
曲面重建
催化作用
曲面(拓扑)
化学物理
化学工程
相(物质)
化学
复合材料
光催化
几何学
工程类
数学
生物化学
有机化学
作者
Anastassia N. Alexandrova,Yonghyuk Lee,Xiaobo Chen,Sabrina M. Gericke,Meng Li,Dmitri N. Zakharov,Ashley R. Head,Judith Yang
标识
DOI:10.1002/anie.202501017
摘要
Titanium dioxide (TiO2) is widely used as catalyst support due to its stability, tunable electronic properties, and surface oxygen vacancies, which are crucial for catalytic processes such as the reverse water‐gas shift (RWGS) reaction. Reduced TiO2 surfaces undergo complex surface reconstructions that endow unique properties but are computationally challenging to describe. In this study, we utilize machine‐learning interatomic potentials (MLIPs) integrated with an active‐learning workflow to efficiently explore reduced rutile TiO2 surfaces. This approach enabled the prediction of a phase diagram as a function of oxygen chemical potential, revealing a variety of reconstructed phases, including a previously unreported subsurface shear plane structure. We further investigate the electronic properties of these surfaces and validate our results by comparing experimental and theoretical high resolution transmission electron microscopy (HRTEM). Our findings provide new insights into how extreme surface reductions influence the structural and electronic properties of TiO2, with potential implications for catalyst design.
科研通智能强力驱动
Strongly Powered by AbleSci AI