Generative AI: elevating knowledge acquisition and retention and recall through autonomy, interactivity and engagement

互动性 召回 自治 生成语法 知识管理 计算机科学 心理学 人机交互 人工智能 多媒体 认知心理学 政治学 法学
作者
Mai Nguyen,Reeti Agarwal,Ashish Malik,Rudresh Pandey
出处
期刊:Journal of Enterprise Information Management [Emerald Publishing Limited]
标识
DOI:10.1108/jeim-08-2024-0433
摘要

Purpose Generative AI (GenAI) in education promises remarkable development changes that can enhance learner experience through the personalised and responsive learning process. In this paper, we investigate how the different features of GenAI – autonomy, interactivity and usability – contribute to student engagement and learning outcomes. Design/methodology/approach From the lens of the self-determination theory, the study seeks to articulate how these GenAI features influence student engagement and their ability to achieve specific goals through interactive learning experiences delivered by GenAI. Qualtrics, a well-known online data collection tool, was employed in the study to collect data from 488 respondents in the UK region who had been exposed to generative AI-based platforms. The sampling approach used was representative, wherein the platform was asked to randomly share the survey with respondents in the UK region who had some experience interacting with Gen AI platforms. Findings The paper’s findings show that increased autonomy and interactivity encourage students to engage more in GenAI platforms. Usability functions as a critical mediator with respect to how autonomy and interactivity are incorporated into engagement and skill acquisition. Skill development emerged as a key mediator of the direct effect between GenAI features and student engagement, confirming that it is an important determinant in engaging with educational content. Further, results reveal a significant positive moderation effect of personalisation between autonomy and engagement. Originality/value The results extend the self-determination theory and offer theoretical suggestions for improving learning through AI-driven educational tools. For educators, the study provides practical insights to motivate the effective integration of GenAI platforms that can provide autonomy, interactivity, usability and personalisation to increase student engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡维红完成签到,获得积分20
1秒前
NexusExplorer应助PAUL采纳,获得10
1秒前
迷失浪人发布了新的文献求助10
2秒前
彩虹完成签到,获得积分10
2秒前
zhaoduo完成签到,获得积分10
2秒前
fdu_sf完成签到,获得积分10
4秒前
激昂的问玉完成签到,获得积分10
4秒前
甜崽发布了新的文献求助10
4秒前
胡图图完成签到 ,获得积分10
4秒前
5秒前
上官若男应助jieli采纳,获得10
5秒前
99完成签到,获得积分10
5秒前
Bug发布了新的文献求助10
6秒前
吸尘器发布了新的文献求助10
6秒前
Amen完成签到,获得积分10
6秒前
顺利鱼完成签到,获得积分10
7秒前
我是老大应助铁观音采纳,获得10
7秒前
小花排草应助热情笙采纳,获得20
8秒前
FashionBoy应助zzzzzzzzzzzz采纳,获得30
8秒前
9秒前
传奇3应助wd采纳,获得10
10秒前
852应助yuqiu采纳,获得60
11秒前
默默完成签到 ,获得积分10
11秒前
闫奥阳完成签到,获得积分10
12秒前
深情的芝麻完成签到,获得积分10
13秒前
wanci应助孙闹闹采纳,获得10
13秒前
14秒前
15秒前
16秒前
HH完成签到,获得积分10
18秒前
18秒前
Jau完成签到,获得积分0
19秒前
19秒前
蓬蓬发布了新的文献求助10
22秒前
希望天下0贩的0应助qx采纳,获得10
22秒前
sim发布了新的文献求助10
23秒前
之贻完成签到,获得积分10
24秒前
可爱的函函应助Jiali采纳,获得10
24秒前
斯文的慕儿完成签到 ,获得积分10
24秒前
ofafafa完成签到 ,获得积分10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150855
求助须知:如何正确求助?哪些是违规求助? 3687043
关于积分的说明 11647843
捐赠科研通 3380126
什么是DOI,文献DOI怎么找? 1854938
邀请新用户注册赠送积分活动 916856
科研通“疑难数据库(出版商)”最低求助积分说明 830694