CBCT Reconstruction Using Single X-Ray Projection With Cycle-Domain Geometry-Integrated Denoising Diffusion Probabilistic Models

投影(关系代数) 概率逻辑 几何学 领域(数学分析) 计算机视觉 降噪 迭代重建 人工智能 计算机科学 扩散 算法 数学 数学分析 物理 热力学
作者
Shaoyan Pan,Junbo Peng,Yuan Gao,Shao-Yuan Lo,Tianyu Luan,Junyuan Li,Tonghe Wang,Chih‐Wei Chang,Zhen Tian,Xiaofeng Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (7): 2933-2947 被引量:1
标识
DOI:10.1109/tmi.2025.3556402
摘要

In the sphere of Cone Beam Computed Tomography (CBCT), acquiring X-ray projections from sufficient angles is indispensable for traditional image reconstruction methods to accurately reconstruct 3D anatomical intricacies. However, this acquisition procedure for the linear accelerator-mounted CBCT systems in radiotherapy takes approximately one minute, impeding its use for ultra-fast intra-fractional motion monitoring during treatment delivery. To address this challenge, we introduce the Patient-specific Cycle-domain Geometric-integrated Denoising Diffusion Probabilistic Model (CG-DDPM). This model aims to leverage patient-specific priors from patient's CT/4DCT images, which are acquired for treatment planning purposes, to reconstruct 3D CBCT from a single-view 2D CBCT projection of any arbitrary angle during treatment, namely single-view reconstructed CBCT (svCBCT). The CG-DDPM framework encompasses a dual DDPM structure: the Projection-DDPM for synthesizing comprehensive full-view projections and the CBCT-DDPM for creating CBCT images. A key innovation is our Cycle-Domain Geometry-Integrated (CDGI) method, incorporating a Cone Beam X-ray Geometric Transformation Module (GTM) to ensure precise, synergistic operation between the dual DDPMs, thereby enhancing reconstruction accuracy and reducing artifacts. Evaluated in a study involving 37 lung cancer patients, the method demonstrated its ability to reconstruct CBCT not only from simulated X-ray projections but also from real-world data. The CG-DDPM significantly outperforms existing V-shape convolutional neural networks (V-nets), Generative Adversarial Networks (GANs), and DDPM methods in terms of reconstruction fidelity and artifact minimization. This was confirmed through extensive voxel-level, structural, visual, and clinical assessments. The capability of CG-DDPM to generate high-quality reconstructed CBCT from a single-view projection at any arbitrary angle using a single model opens the door for ultra-fast, in-treatment volumetric imaging. This is especially beneficial for radiotherapy at motion-associated cancer sites and image-guided interventional procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
APt关注了科研通微信公众号
刚刚
drx66完成签到,获得积分10
1秒前
Dumbledonut发布了新的文献求助10
2秒前
zzh发布了新的文献求助10
2秒前
4秒前
5秒前
5秒前
5秒前
7秒前
科研通AI6应助杂草的生活采纳,获得100
8秒前
8秒前
宅了五百年完成签到,获得积分10
9秒前
9秒前
FashionBoy应助平淡大船采纳,获得10
9秒前
9秒前
乐乐应助钟迪采纳,获得10
9秒前
JaneChen发布了新的文献求助10
10秒前
7373发布了新的文献求助10
10秒前
Dilxat发布了新的文献求助10
11秒前
miemie完成签到,获得积分10
11秒前
完美世界应助dzll采纳,获得10
11秒前
12秒前
CipherSage应助cici采纳,获得10
13秒前
13秒前
14秒前
无翼完成签到,获得积分20
14秒前
14秒前
APt发布了新的文献求助10
14秒前
Karry发布了新的文献求助10
15秒前
15秒前
脑洞疼应助冷酷的夜雪采纳,获得30
15秒前
芒go发布了新的文献求助20
15秒前
零柒完成签到,获得积分20
16秒前
笑点低千雁完成签到,获得积分10
16秒前
所爱皆在完成签到 ,获得积分10
16秒前
wise111发布了新的文献求助10
18秒前
无翼发布了新的文献求助10
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553228
求助须知:如何正确求助?哪些是违规求助? 4637790
关于积分的说明 14651067
捐赠科研通 4579694
什么是DOI,文献DOI怎么找? 2511796
邀请新用户注册赠送积分活动 1486761
关于科研通互助平台的介绍 1457676