已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CBCT Reconstruction using Single X-ray Projection with Cycle-domain Geometry-integrated Denoising Diffusion Probabilistic Models

投影(关系代数) 概率逻辑 几何学 领域(数学分析) 计算机视觉 降噪 迭代重建 人工智能 计算机科学 扩散 算法 数学 数学分析 物理 热力学
作者
Shaoyan Pan,Junbo Peng,Yuan Gao,Shao-Yuan Lo,Tianyu Luan,J. Li,Tonghe Wang,Chih‐Wei Chang,Zhen Tian,Xiaofeng Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3556402
摘要

In the sphere of Cone Beam Computed Tomography (CBCT), acquiring X-ray projections from sufficient angles is indispensable for traditional image reconstruction methods to accurately reconstruct 3D anatomical intricacies. However, this acquisition procedure for the linear accelerator-mounted CBCT systems in radiotherapy takes approximately one minute, impeding its use for ultra-fast intra-fractional motion monitoring during treatment delivery. To address this challenge, we introduce the Patient-specific Cycle-domain Geometric-integrated Denoising Diffusion Probabilistic Model (CG-DDPM). This model aims to leverage patient-specific priors from patient's CT/4DCT images, which are acquired for treatment planning purposes, to reconstruct 3D CBCT from a single-view 2D CBCT projection of any arbitrary angle during treatment, namely single-view reconstructed CBCT (svCBCT). The CG-DDPM framework encompasses a dual DDPM structure: the Projection-DDPM for synthesizing comprehensive full-view projections and the CBCT-DDPM for creating CBCT images. A key innovation is our Cycle-Domain Geometry-Integrated (CDGI) method, incorporating a Cone Beam X-ray Geometric Transformation Module (GTM) to ensure precise, synergistic operation between the dual DDPMs, thereby enhancing reconstruction accuracy and reducing artifacts. Evaluated in a study involving 37 lung cancer patients, the method demonstrated its ability to reconstruct CBCT not only from simulated X-ray projections but also from real-world data. The CG-DDPM significantly outperforms existing V-shape convolutional neural networks (V-nets), Generative Adversarial Networks (GANs), and DDPM methods in terms of reconstruction fidelity and artifact minimization. This was confirmed through extensive voxel-level, structural, visual, and clinical assessments. The capability of CG-DDPM to generate high-quality reconstructed CBCT from a single-view projection at any arbitrary angle using a single model opens the door for ultra-fast, in-treatment volumetric imaging. This is especially beneficial for radiotherapy at motion-associated cancer sites and image-guided interventional procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
苹果笑寒完成签到 ,获得积分10
6秒前
婕婕子完成签到,获得积分10
6秒前
CXC完成签到,获得积分10
7秒前
黄筱妍发布了新的文献求助10
8秒前
泶1完成签到,获得积分10
9秒前
9秒前
跳跳虎完成签到,获得积分20
10秒前
YSM给xzy998的求助进行了留言
12秒前
12秒前
Kayla完成签到 ,获得积分10
12秒前
康师傅冰红茶完成签到 ,获得积分10
14秒前
15秒前
tx完成签到,获得积分10
16秒前
小航完成签到 ,获得积分10
18秒前
18秒前
xxxxxxx发布了新的文献求助10
20秒前
结实的老黑完成签到 ,获得积分10
22秒前
陶醉的烤鸡完成签到 ,获得积分10
22秒前
失眠的霸完成签到,获得积分10
24秒前
结实的老黑关注了科研通微信公众号
26秒前
华仔应助那一片海采纳,获得10
27秒前
清逸完成签到 ,获得积分10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
Xdz完成签到 ,获得积分10
34秒前
渡己完成签到 ,获得积分10
34秒前
lizhiqian2024发布了新的文献求助10
37秒前
38秒前
爆米花应助LIGNET采纳,获得10
39秒前
SciGPT应助xxxxxxx采纳,获得10
40秒前
加鲁鲁完成签到 ,获得积分10
40秒前
华理附院孙文博完成签到 ,获得积分10
45秒前
非泥完成签到,获得积分10
48秒前
xxxxxxx完成签到,获得积分20
48秒前
发发发发发完成签到,获得积分10
48秒前
非而者厚应助YSM采纳,获得200
49秒前
zzzzzttt完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782572
求助须知:如何正确求助?哪些是违规求助? 3327957
关于积分的说明 10234005
捐赠科研通 3042953
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758919