清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Knowledge-Guided Semantic Transfer Network for Few-Shot Image Recognition

计算机科学 人工智能 分类器(UML) 机器学习 余弦相似度 学习迁移 模式识别(心理学)
作者
Zechao Li,Hao Tang,Zhimao Peng,Guo-Jun Qi,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:71
标识
DOI:10.1109/tnnls.2023.3240195
摘要

Deep learning-based models have been shown to outperform human beings in many computer vision tasks with massive available labeled training data in learning. However, humans have an amazing ability to easily recognize images of novel categories by browsing only a few examples of these categories. In this case, few-shot learning comes into being to make machines learn from extremely limited labeled examples. One possible reason why human beings can well learn novel concepts quickly and efficiently is that they have sufficient visual and semantic prior knowledge. Toward this end, this work proposes a novel knowledge-guided semantic transfer network (KSTNet) for few-shot image recognition from a supplementary perspective by introducing auxiliary prior knowledge. The proposed network jointly incorporates vision inferring, knowledge transferring, and classifier learning into one unified framework for optimal compatibility. A category-guided visual learning module is developed in which a visual classifier is learned based on the feature extractor along with the cosine similarity and contrastive loss optimization. To fully explore prior knowledge of category correlations, a knowledge transfer network is then developed to propagate knowledge information among all categories to learn the semantic-visual mapping, thus inferring a knowledge-based classifier for novel categories from base categories. Finally, we design an adaptive fusion scheme to infer the desired classifiers by effectively integrating the above knowledge and visual information. Extensive experiments are conducted on two widely used Mini-ImageNet and Tiered-ImageNet benchmarks to validate the effectiveness of KSTNet. Compared with the state of the art, the results show that the proposed method achieves favorable performance with minimal bells and whistles, especially in the case of one-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
汉堡包应助畅快城采纳,获得10
6秒前
山有扶苏完成签到,获得积分10
9秒前
个性归尘应助tfq200采纳,获得30
11秒前
12秒前
16秒前
hhh2018687完成签到,获得积分10
17秒前
雨后完成签到 ,获得积分10
18秒前
29秒前
Jasmine发布了新的文献求助10
30秒前
32秒前
够了完成签到 ,获得积分10
33秒前
Ray完成签到 ,获得积分10
37秒前
jameslee04完成签到 ,获得积分10
37秒前
39秒前
41秒前
科目三应助Jasmine采纳,获得10
41秒前
44秒前
风中的西牛风吹得蛋颤完成签到,获得积分10
45秒前
武雨寒发布了新的文献求助10
46秒前
贰鸟应助科研通管家采纳,获得20
46秒前
51秒前
Jasmine发布了新的文献求助10
54秒前
NATURECATCHER完成签到,获得积分10
56秒前
56秒前
HXZ发布了新的文献求助10
1分钟前
1分钟前
Leo完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
tengyi完成签到 ,获得积分10
1分钟前
LYJ完成签到,获得积分10
1分钟前
1分钟前
1分钟前
任伟超完成签到,获得积分10
1分钟前
cdercder应助左右是个疯子采纳,获得30
1分钟前
学术骗子小刚完成签到,获得积分0
1分钟前
我是老大应助Jasmine采纳,获得10
1分钟前
1分钟前
1分钟前
Jasmine发布了新的文献求助10
1分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475466
捐赠科研通 3092636
什么是DOI,文献DOI怎么找? 1702237
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101