A novel five-gene metabolism-related risk signature for predicting prognosis and immune infiltration in endometrial cancer: A TCGA data mining

比例危险模型 列线图 接收机工作特性 单变量 免疫系统 Lasso(编程语言) 子宫内膜癌 基因签名 基因 肿瘤科 免疫检查点 癌变 生物 生存分析 免疫疗法 计算生物学 多元统计 癌症 内科学 计算机科学 医学 基因表达 免疫学 机器学习 遗传学 万维网
作者
Huaqing Huang,Xintong Cai,Jiexiang Lin,Qiaoling Wu,Kailin Zhang,Yibin Lin,Bin Liu,Jie Lin
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106632-106632 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106632
摘要

Metabolism dysfunction can affect the biological behavior of tumor cells and result in carcinogenesis and the development of various cancers. However, few thoughtful studies focus on the predictive value and efficacy of immunotherapy of metabolism-related gene signatures in endometrial cancer (EC). This research aims to construct a predictive metabolism-related gene signature in EC with prognostic and therapeutic implications.We downloaded the RNA profile and clinical data of 503 EC patients and screened out different expressions of metabolism-related genes with prognosis influence of EC from The Cancer Genome Atlas (TCGA) database. We first established a metabolism-related genes model using univariate and multivariate Cox regression and Lasso regression analysis. To internally validate the predictive model, 503 samples (entire set) were randomly assigned into the test set and the train set. Then, we applied the receiver operating characteristic (ROC) curve to confirm our previous predictive model and depicted a nomogram integrating the risk score and the clinicopathological feature. We employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways of the model. Afterward, we used ESTIMATE to evaluate the TME. Also, we adopted CIBERSORT and ssGSEA to estimate the fraction of immune infiltrating cells and immune function. At last, we investigated the relationship between the predictive model and immune checkpoint genes.We first constructed a predictive model based on five metabolism-related genes (INPP5K, PLPP2, MBOAT2, DDC, and ITPKA). This model showed the ability to predict EC patients' prognosis accurately and performed well in the train set, test set, and entire set. Then we confirmed the predictive signature was a novel independent prognostic factor in EC patients. In addition, we drew and validated a nomogram to precisely predict the survival rate of EC patients at 1-, 3-, and 5-years (ROC1-year = 0.714, ROC3-year = 0.750, ROC5-year = 0.767). Furthermore, GSEA unveiled that the cell cycle, certain malignant tumors, and cell metabolism were the main biological functions enriched in this identified model. We found the five metabolism-related genes signature was associated with the immune infiltrating cells and immune functions. Most importantly, it was linked with specific immune checkpoints (PD-1, CTLA4, and CD40) that could predict immunotherapy's clinical response.The metabolism-related genes signature (INPP5K, PLPP2, MBOAT2, DDC, and ITPKA) is a valuable index for predicting the survival outcomes and efficacy of immunotherapy for EC in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴朗的蓝发布了新的文献求助10
1秒前
1秒前
彭于晏应助笑点低诗桃采纳,获得10
1秒前
ninalee发布了新的文献求助10
1秒前
1秒前
科研通AI6应助舒心乐荷采纳,获得10
2秒前
provin完成签到,获得积分10
4秒前
不配.应助Glufo采纳,获得20
4秒前
星辰大海应助yuhang采纳,获得10
5秒前
6秒前
科研通AI6应助liuli采纳,获得10
6秒前
笨笨的复天完成签到,获得积分10
7秒前
8秒前
9秒前
乐乐应助爱科研的小导航采纳,获得10
9秒前
Huang发布了新的文献求助10
11秒前
lcs发布了新的文献求助30
11秒前
ninalee完成签到,获得积分10
12秒前
14秒前
15秒前
隐形曼青应助Glufo采纳,获得10
16秒前
17秒前
丹青完成签到 ,获得积分10
17秒前
viper3完成签到,获得积分10
18秒前
汉堡包应助珍妮采纳,获得10
19秒前
jeser完成签到,获得积分10
19秒前
20秒前
西西完成签到,获得积分10
20秒前
20秒前
21秒前
大海123发布了新的文献求助10
21秒前
Wanda发布了新的文献求助30
21秒前
22秒前
外星人完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
ray发布了新的文献求助10
24秒前
25秒前
科研通AI5应助王粒采纳,获得10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224881
求助须知:如何正确求助?哪些是违规求助? 3758199
关于积分的说明 11813279
捐赠科研通 3419863
什么是DOI,文献DOI怎么找? 1876919
邀请新用户注册赠送积分活动 930347
科研通“疑难数据库(出版商)”最低求助积分说明 838581