Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework

深度学习 Softmax函数 人工智能 计算机科学 卷积神经网络 渲染(计算机图形) 医学影像学 模式识别(心理学) 机器学习
作者
Hemlata P. Sahu,Ramgopal Kashyap
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:88
标识
DOI:10.1142/s0219467825500044
摘要

Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老高完成签到,获得积分10
刚刚
小石榴爸爸完成签到 ,获得积分10
1秒前
klicking完成签到,获得积分10
3秒前
大模型应助hahahahaha采纳,获得10
5秒前
老高发布了新的文献求助30
5秒前
彩虹猫完成签到 ,获得积分10
6秒前
7秒前
9秒前
10秒前
小石榴的爸爸完成签到 ,获得积分10
11秒前
13秒前
平心定气完成签到 ,获得积分10
13秒前
楮树驳回了陈雷应助
14秒前
15秒前
15秒前
典雅凌翠发布了新的文献求助10
20秒前
华仔应助fan采纳,获得10
20秒前
鞠鞠发布了新的文献求助10
21秒前
科研野狗完成签到 ,获得积分10
21秒前
21秒前
开心的大炮完成签到,获得积分20
25秒前
moon关注了科研通微信公众号
25秒前
tsuru完成签到,获得积分20
27秒前
调皮的妙竹完成签到,获得积分10
27秒前
32秒前
小智多星完成签到 ,获得积分10
32秒前
小蘑菇应助tsuru采纳,获得10
34秒前
40秒前
40秒前
白菜发布了新的文献求助10
44秒前
搜集达人应助电麻木采纳,获得10
44秒前
小智多星关注了科研通微信公众号
45秒前
moon发布了新的文献求助10
47秒前
海人发布了新的文献求助10
47秒前
赘婿应助姽婳wy采纳,获得10
48秒前
tsuru给tsuru的求助进行了留言
51秒前
51秒前
51秒前
小太阳留下了新的社区评论
55秒前
科研通AI5应助朝阳CAAS采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776384
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207777
捐赠科研通 3037103
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870