亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection of structural defects in tunnel lining via network pruning and knowledge distillation in YOLO

修剪 蒸馏 计算机科学 人工智能 工艺工程 环境科学 法律工程学 工程类 化学 色谱法 生物 植物
作者
Ruilin Liu,Wei Zeng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241289066
摘要

Cracks in tunnel linings might cause a lack of water tightness, directly affecting the overall stability and durability using an increased risk of corrosion of the rebar. Hence, automatic, timely and accurate detection of cracks is significant to safe operation and maintenance for tunnels. In recent years, Convolution Neural Network (CNN) has achieved success in the field of computer vision. However, the large storage requirement and high computational consumption of the model limit its application. Aiming to overcome these challenges, this study proposes a lightweight target detector YOLOV5-lite, which utilizes transfer learning to construct the YOLO single-stage target detection model and uses the Efficient Intersection over Union ( EIoU) in the loss function to optimize its convergence speed. To improve the model efficiency, a Network Pruning algorithm is performed in order to reduce the number of parameters in the model. To compensate for the loss of accuracy caused by the Network Pruning algorithm compressing the network, knowledge distillation algorithm is implemented in this study and fused with the Network Pruning algorithm. This results in a new lightweight modelling framework which has a high computational efficiency enabling deployment in mobile devices as well as high accuracy leading to good detection performance. To illustrate the advantages of the proposed method, two experiments using an extensive evaluation of the YOLOV5 series of models and a comparison with different model tests were made to validate it. In the evaluation of the YOLOv5 series, key findings include: (a) The optimized YOLOV5-loss model, incorporating the EIoU loss function, achieved an impressive crack recognition accuracy of 0.97. This model demonstrated superior capability in detecting fine cracks, particularly in corner regions, with an accuracy exceeding 0.85. The EIoU loss function offers enhanced sensitivity to overlapping regions and more precise boundary localization, which are critical in identifying minute or boundary-ambiguous cracks. (b) The YOLOV5-finetuned model, which underwent network pruning alone, achieved an accuracy of 0.74 but was hindered by significant detection gaps, despite achieving a 50.9% reduction in model size. In contrast, the YOLOV5-lite model, refined using a combination of network pruning and knowledge distillation, maintained a high recognition accuracy of 0.96, with only a negligible 0.01 difference from the optimal YOLOV5-loss model. When compared with five different models, the YOLOv5-lite model demonstrated significant advantages: A substantial reduction in the size of the proposed YOLOV5-lite by 184.1 MB, 659.4 MB and an increase in the number of the transmitted Frames Per Second (FPS) by 6.69 f/s, 13.24 f/s compared with that of YOLOV3, Faster R-CNN, respectively. Overall, the proposed new method consistently achieves high detection performance as well as substantially reducing computational demands, making it well-suited for real-time applications, particularly in mobile and embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志全完成签到 ,获得积分10
10秒前
14秒前
朴素海亦发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助30
23秒前
ldjldj_2004完成签到 ,获得积分10
27秒前
迈克老狼完成签到 ,获得积分10
29秒前
朴素海亦发布了新的文献求助10
1分钟前
1分钟前
如意竺完成签到,获得积分10
2分钟前
吉祥高趙完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MMMMM完成签到,获得积分0
2分钟前
甲第完成签到 ,获得积分10
2分钟前
虎子完成签到 ,获得积分10
2分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
淡淡醉波wuliao完成签到 ,获得积分0
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助150
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
小young完成签到 ,获得积分10
5分钟前
云岫完成签到 ,获得积分10
6分钟前
LHL完成签到,获得积分10
6分钟前
Hans完成签到,获得积分10
6分钟前
阔达棉花糖完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
oscar完成签到,获得积分10
7分钟前
害羞便当完成签到 ,获得积分10
7分钟前
gexzygg应助科研通管家采纳,获得10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
8分钟前
脑洞疼应助lihailong采纳,获得10
8分钟前
笨笨山芙完成签到 ,获得积分10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4261850
求助须知:如何正确求助?哪些是违规求助? 3794764
关于积分的说明 11899346
捐赠科研通 3441769
什么是DOI,文献DOI怎么找? 1888780
邀请新用户注册赠送积分活动 939502
科研通“疑难数据库(出版商)”最低求助积分说明 844579