亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection of structural defects in tunnel lining via network pruning and knowledge distillation in YOLO

修剪 蒸馏 计算机科学 人工智能 工艺工程 环境科学 法律工程学 工程类 化学 色谱法 生物 植物
作者
Ruilin Liu,Wei Zeng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241289066
摘要

Cracks in tunnel linings might cause a lack of water tightness, directly affecting the overall stability and durability using an increased risk of corrosion of the rebar. Hence, automatic, timely and accurate detection of cracks is significant to safe operation and maintenance for tunnels. In recent years, Convolution Neural Network (CNN) has achieved success in the field of computer vision. However, the large storage requirement and high computational consumption of the model limit its application. Aiming to overcome these challenges, this study proposes a lightweight target detector YOLOV5-lite, which utilizes transfer learning to construct the YOLO single-stage target detection model and uses the Efficient Intersection over Union ( EIoU) in the loss function to optimize its convergence speed. To improve the model efficiency, a Network Pruning algorithm is performed in order to reduce the number of parameters in the model. To compensate for the loss of accuracy caused by the Network Pruning algorithm compressing the network, knowledge distillation algorithm is implemented in this study and fused with the Network Pruning algorithm. This results in a new lightweight modelling framework which has a high computational efficiency enabling deployment in mobile devices as well as high accuracy leading to good detection performance. To illustrate the advantages of the proposed method, two experiments using an extensive evaluation of the YOLOV5 series of models and a comparison with different model tests were made to validate it. In the evaluation of the YOLOv5 series, key findings include: (a) The optimized YOLOV5-loss model, incorporating the EIoU loss function, achieved an impressive crack recognition accuracy of 0.97. This model demonstrated superior capability in detecting fine cracks, particularly in corner regions, with an accuracy exceeding 0.85. The EIoU loss function offers enhanced sensitivity to overlapping regions and more precise boundary localization, which are critical in identifying minute or boundary-ambiguous cracks. (b) The YOLOV5-finetuned model, which underwent network pruning alone, achieved an accuracy of 0.74 but was hindered by significant detection gaps, despite achieving a 50.9% reduction in model size. In contrast, the YOLOV5-lite model, refined using a combination of network pruning and knowledge distillation, maintained a high recognition accuracy of 0.96, with only a negligible 0.01 difference from the optimal YOLOV5-loss model. When compared with five different models, the YOLOv5-lite model demonstrated significant advantages: A substantial reduction in the size of the proposed YOLOV5-lite by 184.1 MB, 659.4 MB and an increase in the number of the transmitted Frames Per Second (FPS) by 6.69 f/s, 13.24 f/s compared with that of YOLOV3, Faster R-CNN, respectively. Overall, the proposed new method consistently achieves high detection performance as well as substantially reducing computational demands, making it well-suited for real-time applications, particularly in mobile and embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的中蓝完成签到 ,获得积分10
24秒前
Akim应助zhang采纳,获得10
24秒前
清秀的懿轩完成签到 ,获得积分10
41秒前
1分钟前
1分钟前
山橘月发布了新的文献求助10
1分钟前
1分钟前
1461完成签到 ,获得积分10
2分钟前
2分钟前
zhang发布了新的文献求助10
2分钟前
传奇3应助研友_Fan采纳,获得10
3分钟前
DYKNGIVDFY完成签到,获得积分10
4分钟前
山橘月发布了新的文献求助10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
丘比特应助科研通管家采纳,获得30
4分钟前
hhh完成签到,获得积分10
5分钟前
5分钟前
Tiger完成签到,获得积分10
5分钟前
研友_Fan发布了新的文献求助10
5分钟前
DYKNGIVDFY发布了新的文献求助10
5分钟前
George发布了新的文献求助10
6分钟前
6分钟前
思源应助科研通管家采纳,获得10
6分钟前
7分钟前
xun完成签到,获得积分10
7分钟前
Linda发布了新的文献求助30
7分钟前
整齐的蜻蜓完成签到 ,获得积分10
7分钟前
8分钟前
Linda完成签到,获得积分10
8分钟前
科研通AI5应助菁菁采纳,获得30
8分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
9分钟前
9分钟前
Owllight发布了新的文献求助10
9分钟前
9分钟前
研友_Fan完成签到,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
菁菁发布了新的文献求助30
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784797
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244208
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508