Could ChatGPT get an engineering degree? Evaluating higher education vulnerability to AI assistants

委派 脆弱性(计算) 学位课程 比例(比率) 计算机科学 高等教育 学位(音乐) 数学教育 编译程序 医学教育 心理学 医学 量子力学 政治学 法学 程序设计语言 物理 计算机安全 声学
作者
Beatriz Borges,Negar Foroutan,Deniz Bayazit,Anna Sotnikova,Syrielle Montariol,Tanya Nazaretsky,Mohammadreza Banaei,Alireza Sakhaeirad,Philippe Servant,Seyed Parsa Neshaei,Jibril Frej,Angelika Romanou,Gail Garfinkel Weiss,Sepideh Mamooler,Zeming Chen,Simin Fan,Silin Gao,Mete Ismayilzada,Debjit Paul,Philippe Schwaller
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (49) 被引量:6
标识
DOI:10.1073/pnas.2414955121
摘要

AI assistants, such as ChatGPT, are being increasingly used by students in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level Science, Technology, Engineering, and Mathematics (STEM) courses. Specifically, we compile a dataset of textual assessment questions from 50 courses at the École polytechnique fédérale de Lausanne (EPFL) and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass the nonproject assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助无限师采纳,获得20
刚刚
Mr.木子发布了新的文献求助10
1秒前
杨总完成签到,获得积分10
1秒前
着急的又晴完成签到 ,获得积分10
2秒前
hmyh1202发布了新的文献求助10
2秒前
面壁的章北海完成签到,获得积分10
2秒前
李爱国应助李小二采纳,获得10
2秒前
2秒前
3秒前
华仔完成签到,获得积分10
4秒前
凯凯发布了新的文献求助10
4秒前
5秒前
Ava应助欣欣采纳,获得10
5秒前
5秒前
李沐唅发布了新的文献求助10
5秒前
Chnimike完成签到 ,获得积分10
6秒前
隐形曼青应助rong采纳,获得10
6秒前
6秒前
6秒前
科研天才发布了新的文献求助10
7秒前
QMint发布了新的文献求助10
7秒前
7秒前
充电宝应助斑马采纳,获得10
7秒前
8秒前
8秒前
9秒前
大模型应助王同学采纳,获得10
9秒前
123456发布了新的文献求助10
10秒前
qx发布了新的文献求助10
10秒前
缥缈幻翠完成签到,获得积分10
11秒前
11秒前
normankasimodo完成签到,获得积分10
11秒前
ilzhuzhu发布了新的文献求助10
12秒前
钱儿完成签到,获得积分20
13秒前
YanZhe发布了新的文献求助10
13秒前
14秒前
wudizhuzhu233完成签到,获得积分10
14秒前
脑洞疼应助蜗牛的世界采纳,获得10
14秒前
14秒前
称夜完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932803
求助须知:如何正确求助?哪些是违规求助? 3477698
关于积分的说明 10998431
捐赠科研通 3208032
什么是DOI,文献DOI怎么找? 1772652
邀请新用户注册赠送积分活动 859923
科研通“疑难数据库(出版商)”最低求助积分说明 797417